Next-Generation Smart Biomaterials in Dental Implantology: Titanium and Emerging Alternatives
Main Article Content
Keywords
Additive manufacturing, Artificial intelligence in dentistry, Bioactive implants, Bioresorbable implants, Dental implantology, Titanium implants
Abstract
Background: Tooth loss affects approximately 3.74 billion people globally, with 7% of the population aged 20 years or older experiencing complete edentulism. Traditional prosthetic solutions present significant limitations, including poor retention and accelerated bone loss. Contemporary dental implantology has undergone substantial evolution since 2020, incorporating advanced biomaterials, multifunctional surface modifications, and digital AI-driven workflows to address these clinical challenges. Objective: This review synthesises recent advances in dental implant materials, surface technologies, design methodologies, and clinical protocols published between 2020 and 2025, with an emphasis on emerging biomaterials and intelligent digital approaches that enhance osseointegration, survival rates, and personalised patient outcomes. Material and Methods: A comprehensive literature review was conducted examining established implant materials (commercially pure titanium, β-type titanium alloys, yttria-stabilised tetragonal zirconia polycrystal), emerging bioactive and bioresorbable systems (magnesium alloys, polylactic acid/β-tricalcium phosphate composites), surface modification strategies, digital technologies, artificial intelligence applications, mechanical complications, biological complications management, and clinical loading protocols. Results: Contemporary titanium implants with sandblasted, large-grit acid-etched surfaces achieve 96–99% five-year survival rates, while metal-free zirconia systems demonstrate survival rates of 94–97%. Emerging β-type alloys and bioresorbable systems show promising preclinical and early clinical results. Immediate and early functional loading protocols deliver comparable outcomes to conventional delayed loading when primary stability criteria are met. AI-assisted diagnostics achieve greater than 98% accuracy in anatomical segmentation and over 90% predictive accuracy for implant failure. Peri-implantitis remains a predominant challenge with 44% recurrence rates despite surgical intervention. Conclusion: Next-generation dental implantology represents a paradigm shift toward predictable, personalised care through synergistic integration of biomaterial innovation, digital workflows, and artificial intelligence. While established materials demonstrate reliable long-term success, bioresorbable and bioactive systems offer regenerative potential requiring optimisation of degradation kinetics and mechanical durability. Addressing peri-implantitis recurrence and standardising clinical endpoints for emerging technologies remain critical priorities for achieving consistent long-term clinical success.
Downloads
Download data is not yet available.
Abstract 297 | PDF Downloads 20
References
1. Alfaraj, T.A., Al-Madani, S., Alqahtani, N.S., et al. Optimizing osseointegration in dental implantology: a cross-disciplinary review of current and emerging strategies. Cureus. 2023;15(10):e47943. https://doi.org/10.7759/cureus.47943.
2. Kumar, V., Seth, J., Aeran, M., et al. From surface to success: how implant surfaces shape osseointegration. IJPI. 2024;9(2):58–63. https://doi.org/10.18231/j.ijpi.2024.013.
3. Joshi, N.P., Agwani, K.M., Mathur, R., et al. Rooted in bone: the role of osseointegration in dental implantology. IJISRT. 2025;10(4):2164–2169. https://doi.org/10.38124/ijisrt/25apr1088.
4. Pandey, C., Rokaya, D., Bhattarai, B.P. Contemporary concepts in osseointegration of dental implants: a review. BioMed Res Int. 2022:6170452. https://doi.org/10.1155/2022/6170452.
5. Cooper, L.F., and Shirazi, S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Front Oral Maxillofac Med. 2022;4:39. https://doi.org/10.21037/fomm-21-77.
6. Sharma, P., Mishra, V., Murab, S. Unlocking osseointegration: surface engineering strategies for enhanced dental implant integration. ACS Biomat Sci Eng. 2025;11(1):67–94. https://doi.org/10.1021/acsbiomaterials.4c01178.
7. Beschnidt, S.M., Cacaci, C., Dedeoglu, K., et al. Implant success and survival rates in daily dental practice: 5-year results of a non-interventional study using CAMLOG SCREW-LINE implants with or without platform-switching abutments. Int J Implant Dent. 2018;4(1):33. https://doi.org/10.1186/s40729-018-0145-3.
8. Waghmare, G., Waghmare, K., Bagde, S., et al. Materials evolution in dental implantology: a comprehensive review. J Adv Res Appl Mech. 2024;123(1):75–100. https://doi.org/10.37934/aram.123.1.75100.
9. Manfredini, M., Poli, P.P., Giboli, L., et al.Clinical factors on dental implant fractures: a systematic review. Dent J. 2024;12(7):200. https://doi.org/10.3390/dj12070200.
10. Kupka, J.R., König, J., Al-Nawas, B., et al. How far can we go? A 20-year meta-analysis of dental implant survival rates. Clin Oral Invest. 2024;28(10):541. https://doi.org/10.1007/s00784-024-05929-3.
11. Liu, C., Liu, Y., Xie, R., et al. The evolution of robotics: research and application progress of dental implant robotic systems. Int J Oral Sci. 2024;16(1):28. https://doi.org/10.1038/s41368-024-00296-x.
12. Hakim, L.K., Yari, A., Nikparto, N., et al. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24(1):126. https://doi.org/10.1186/s12903-024-03911-9.
13. Bahrami, R., Pourhajibagher, M., Nikparto, N., et al. Robot-assisted dental implant surgery procedure: a literature review. J Dent Sci. 2024;19(3):1359–1368. https://doi.org/10.1016/j.jds.2024.03.011.
14. Wu, X.Y., Shi, J.Y., Qiao, S.C., et al. Accuracy of robotic surgery for dental implant placement: a systematic review and meta-analysis. Clin Oral Implants Res. 2024;35(6):598–608. https://doi.org/10.1111/clr.14255.
15. Maher, N., Mahmood, A., Fareed, M.A., et al. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res. 2025;72:265–286. https://doi.org/10.1016/j.jare.2024.07.016.
16. Accioni, F., Vázquez, J., Merinero, M., et al. Latest trends in surface modification for dental implantology: innovative developments and analytical applications. Pharmaceutics, 2022;14(2):455. https://doi.org/10.3390/pharmaceutics14020455.
17. Kochar, S.P., Reche, A., Paul, P. The etiology and management of dental implant failure: a review. Cureus. 2022;14(10):e30455. https://doi.org/10.7759/cureus.30455.
18. Sailer, I., Karasan, D., Todorovic, A., et al. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130–144. https://doi.org/10.1111/prd.12416.
19. Papadakis, I., Spanou, A., Kalyvas, D. Success rate and safety of dental implantology in patients treated with antiresorptive medication: a systematic review. J Oral Implantol. 2021:47(2):169–180. https://doi.org/10.1563/aaid-joi-D-19-00088.
20. Ebenezer, S., Kumar, V.V., Thor, A. Basics of dental implantology for the oral surgeon. In Oral and maxillofacial surgery for the clinician. Bonanthaya, K., Panneerselvam, E., eds. Springer Nature: Singapore, 2021; pp. 385–405. https://doi.org/10.1007/978-981-15-1346-6_18.
21. Matos, G.R.M. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg. 2021;20(1):1–4. https://doi.org/10.1007/s12663-020-01437-5.
22. Lokwani, B.V., Gupta, D., Agrawal, R.S., et al. The use of concentrated growth factor in dental implantology: a systematic review. J Indian Prosthodont Soc. 2020;20(1):3–10. https://doi.org/10.4103/jips.jips_375_19.
23. Zhang, Y., Gulati, K., Li, Z., et al. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials. 2021;11(10):2489. https://doi.org/10.3390/nano11102489.
24. Lang, N.P., Berglundh, T., Giannobile, W.V., et al. Lindhe's clinical periodontology and implant dentistry, 7th ed.; John Wiley: Hoboken, NJ, USA; 2021; pp. 3–49.
25. Dutta, S.R., Passi, D., Singh, P., et al. Risks and complications associated with dental implant failure: critical update. Nat J Maxillofac Surg. 2020;11(1):14–19. https://doi.org/10.4103/njms.NJMS_75_16.
26. Dutta, S.R., Passi, D., Singh, P., et al. Risks and complications associated with dental implant failure: Critical update. Nat J Maxillofac Surg. 2020;11(1):14–19. https://doi.org/10.4103/njms.NJMS_75_16.
27. Pellegrino, G., Bellini, P., Cavallini, P.F., et al. Dynamic navigation in dental implantology: the influence of surgical experience on implant placement accuracy and operating time. An in vitro study. Int J Environ Res Public Health. 2020;17(6):2153. https://doi.org/10.3390/ijerph17062153.
28. Nulty, A. A literature review on prosthetically designed guided implant placement and the factors influencing dental implant success. Br Dent J. 2024;236(3):169–180. https://doi.org/10.1038/s41415-024-7050-3.
29. Jia, S., Wang, G., Zhao, Y., et al. Accuracy of an autonomous dental implant robotic system versus static guide-assisted implant surgery: a retrospective clinical study. J Pros Dent. 2025;133(3):771–779. https://doi.org/10.1016/j.prosdent.2023.04.027.
30. Li, Z., Xie, R., Bai, S., et al. Implant placement with an autonomous dental implant robot: a clinical report. J Prosth Dent. 2025;133(2):340–345. https://doi.org/10.1016/j.prosdent.2023.02.014.
31. Panahi, O. Smart robotics for personalized dental implant solutions. Dental. 2025;7(1):21. https://doi.org/10.35702/dent.10021.
32. Kang, D.Y., Duong, H.P., Park, J.C. Application of deep learning in dentistry and implantology. J Implant Appl Sci. 2020;24(3):148–181. https://doi.org/10.32542/implantology.202015.
33. Do, T.A., Le, H.S., Shen, Y.W., et al. Risk factors related to late failure of dental implant—a systematic review of recent studies. Int J Environ Res Public Health. 2020;17(11):3931. https://doi.org/10.3390/ijerph17113931.
34. Mohammad‐Rahimi, H., Motamedian, S.R., Pirayesh, Z., et al. Deep learning in periodontology and oral implantology: a scoping review. J Periodont Res. 2022;57(5):942–951. https://doi.org/10.1111/jre.13037.
35. Kligman, S., Ren, Z., Chung, C.H., et al. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med. 2021;10(8):1641. https://doi.org/10.3390/jcm10081641.
36. Lee, J.H., Kim, Y.T., Lee, J.B., et al A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: a multi-center study. Diagnostics. 2020;10(11):910. https://doi.org/10.3390/diagnostics10110910.
37. Kim, J.C., Lee, M., Yeo, I.S.L. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. Mat Horiz. 2022;9(5):1387–1411. https://doi.org/10.1039/D1MH01621K.
38. Gao, J., Pan, Y., Gao, Y., et al. Research progress on the preparation process and material structure of 3D-printed dental implants and their clinical applications. Coatings. 2024;14(7):781. https://doi.org/10.3390/coatings14070781.
39. Hossain, N., Mobarak, M.H., Islam, M.A., et al. Recent development of dental implant materials, synthesis process, and failure – a review. Results Chem. 2023;6:101136. https://doi.org/10.1016/j.rechem.2023.101136.
40. Jambhulkar, N., Jaju, S., Raut, A., et al. A review on surface modification of dental implants among various implant materials. Mat Today Proc. 2023;72:3209–3215. https://doi.org/10.1016/j.matpr.2022.12.022.
41. Alagatu, A., Dhapade, D., Gajbhiye, M., et al. Review of different material and surface modification techniques for dental implants. Mat Today Proc. 2022;60:2245–2249. https://doi.org/10.1016/j.matpr.2022.03.338.
42. Kurup, A., Dhatrak, P., Khasnis, N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: a review. Mats Today Proc. 2021;39:84–90. https://doi.org/10.1016/j.matpr.2020.06.163.
43. Sun, X.D., Liu, T.T., Wang, Q.Q., et al. Surface modification and functionalities for titanium dental implants. ACS Biomat Sci Eng. 2023;9(8):4442–4461. https://doi.org/10.1021/acsbiomaterials.3c00183.
44. Herráez-Galindo, C., Rizo-Gorrita, M., Maza-Solano, S., et al. A review on CAD/CAM yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and polymethyl methacrylate (PMMA) and their biological behavior. Polymers. 2022;14(5):906. https://doi.org/10.3390/polym14050906.
45. Bai, Z., Wang, B., Bian, J., et al. Antibacterial and osteogenic activities of thiolated and aminated yttria-stabilized tetragonal zirconia polycrystal with tolerance to low temperature degradation. Ceramics Int. 2023;49(23):37817–37828. https://doi.org/10.1016/j.ceramint.2023.09.110.
46. Cho, Y.E., Lim, Y.J., Han, J.S., et al. Effect of yttria content on the translucency and masking ability of yttria-stabilized tetragonal zirconia polycrystal. Materials. 2020;13(21):4726. https://doi.org/10.3390/ma13214726.
47. Küçükekenci, A.S., Çakmak, G., Güven, M.E., et al. Implant-supported fixed complete denture frameworks in additively and subtractively manufactured high-performance polymers: fabrication and fit accuracy. J Dent. 2025;105838. https://doi.org/10.1016/j.jdent.2025.105838.
48. Alqutaibi, A.Y., Alghauli, M.A., Algabri, R.S., et al. Applications, modifications, and manufacturing of polyetheretherketone (PEEK) in dental implantology: a comprehensive critical review. Int Mat Rev. 2025;70(2):103–136. https://doi.org/10.1177/09506608251314251.
49. Zol, S.M., Alauddin, M.S., Said, Z., et al. Description of poly (aryl-ether-ketone) materials (PAEKs), polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) for application as a dental material: a materials science review. Polymers. 2023;15(9):2170. https://doi.org/10.3390/polym15092170.
50. McMullan, R., Golbang, A., Salma-Ancane, K., et al. Review of 3D printing of polyaryletherketone/apatite composites for lattice structures for orthopedic implants. Applied Sci. 2025;15(4):1804. https://doi.org/10.3390/app15041804.
51. Menini, M., Delucchi, F., Bagnasco, F., et al. Shock absorption capacity of high-performance polymers for dental implant-supported restorations: in vitro study. Dent J. 2024;12(4):111. https://doi.org/10.3390/dj12040111.
52. Dong, H., Liu, H., Zhou, N., et al. Surface-modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012. https://doi.org/10.3390/coatings10111012.
53. Nasr Azadani, M., Zahedi, A., Bowoto, O.K., et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomat. 2022;11(1):1–26. https://doi.org/10.1007/s40204-022-00182-x.
54. Herber, V., Okutan, B., Antonoglou, G., et al. Bioresorbable magnesium-based alloys as novel biomaterials in oral bone regeneration: general review and clinical perspectives. J Clin Med. 2021;10(9):1842. https://doi.org/10.3390/jcm10091842.
55. Omigbodun, F.T., Oladapo, B.I., Osa-uwagboe, N. Exploring the frontier of polylactic acid/hydroxyapatite composites in bone regeneration and their revolutionary biomedical applications – a review. J Reinforced Plast Comp. 2024;0(0). https://doi.org/10.1177/07316844241278045.
56. Topuz, M. Hydroxyapatite – Al2O3-reinforced poly(lactic acid) hybrid coatings on magnesium: characterization, mechanical and in vitro bioactivity properties. Surf Interfaces. 2023;37:102724. https://doi.org/10.1016/j.surfin.2023.102724.
57. Nilawar, S., Uddin, M., Chatterjee, K. Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments. Mat Adv. 2021;2(24):7820–7841. https://doi.org/10.1039/D1MA00733E.
58. Eldokmak, M.M., Essawy, M.M., Abdelkader, S., et al. Bioinspired poly-dopamine/nano-hydroxyapatite: an upgrading biocompatible coat for 3D-printed polylactic acid scaffold for bone regeneration. Odontology. 2025;113(1):89–100. https://doi.org/10.1007/s10266-024-00945-x.
59. Zhao, F., Yang, Z., Liu, L., et al. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. Biomat Translat. 2020;1(1):82. https://doi.org/10.3877/cma.j.issn.2096-112X.2020.01.008.
60. Cannillo, V., Salvatori, R., Bergamini, S., et al. Bioactive glasses in periodontal regeneration: existing strategies and future prospects—a literature review. Materials. 2022;15(6):2194. https://doi.org/10.3390/ma15062194.
61. Ali, N., Lone, N.F., Siddiquee, A.N., et al. A novel hybrid approach to develop bioresorbable material. J Orthopaed. 2022;34:61–66. https://doi.org/10.1016/j.jor.2022.08.012.
62. Nogueira, D.M.B., de Oliveira Rosso, M.P., Buchaim, D.V., et al. Update on the use of 45S5 bioactive glass in the treatment of bone defects in regenerative medicine. World J Orthoped. 2024;15(3):204–214. https://doi.org/10.5312/wjo.v15.i3.204.
63. Manesh, M.B., Vatankhah, N., Manesh, F.B. Comparison of microbiota in zirconia and titanium implants: a qualitative systematic review. Int Dent J. 2025;75(1):51–58. https://doi.org/10.1016/j.identj.2024.08.001.
64. Zhang, L.C., Chen, L.Y., Wang, L. Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Adv Eng Mat. 2020;22(5):1901258. https://doi.org/10.1002/adem.202070017
https://doi.org/10.1002/adem.201901258.
65. Losic, D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opinion Drug Deliv. 2021;18(10):1355–1378. https://doi.org/10.1080/17425247.2021.1928071.
66. Li, M., Cokic, S., Van Meerbeek, B., et al. Novel zirconia ceramics for dental implant materials. J Mat Sci Technol. 2025;210:97–108. https://doi.org/10.1016/j.jmst.2024.05.041.
67. Hong, G., Liao, M., Wu, T., et al. Improving osteogenic activity of Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) surfaces by grafting of silanes with different end groups. App Surf Sci. 2021;570:vp. https://doi.org/10.1016/j.apsusc.2021.151144.
68. Fiorin, L., Moris, I.C., Faria, A.C., et al. Effect of different grinding protocols on surface characteristics and fatigue behavior of yttria-stabilized zirconia polycrystalline: an in vitro study. J Prosth Dent. 2020;124(4):486.e1–486.e8. https://doi.org/10.1016/j.prosdent.2020.03.016.
69. Dobrzyńska‐Mizera, M., Dodda, J.M., Liu, X., et al. Engineering of bioresorbable polymers for tissue engineering and drug delivery applications. Adv Healthcare Mat. 2024;13(30):e2401674. https://doi.org/10.1002/adhm.202401674.
70. Narayanan, S., Singh, M., Kandasubramanian, B. Innovative approaches in regenerative medicine for the development of sustainable and bioactive implants. Biomed Mat Devices. 2025;1–25. https://doi.org/10.1007/s44174-025-00397-z.
71. Chio, A., Mak, A. The digital workflow in implant dentistry. In Prac Proc Implant Dent. Ho, C.C.K. John Wiley: Hoboken, NJ, USA; 2021; pp. 335-349. https://doi.org/10.1002/9781119399186.ch34.
72. Pradies, G., Morón‐Conejo, B., Martínez‐Rus, F., et al. Current applications of 3D printing in dental implantology: a scoping review mapping the evidence. Clin Oral Implants Res. 2024;35(8):1011–1032. https://doi.org/10.1111/clr.14198.
73. Papaspyridakos, P., Chen, Y.W., Alshawaf, B., et al. Digital workflow: in vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J Prosth Dent. 2020;124(5):589–593. https://doi.org/10.1016/j.prosdent.2019.10.029.
74. Altalhi, A.M., Alharbi, F.S., Alhodaithy, M.A., et al. The impact of artificial intelligence on dental implantology: a narrative review. Cureus. 2023;15(10):e47941. https://doi.org/10.7759/cureus.47941.
75. Macrì, M., D’Albis, V., D’Albis, G., et al. The role and applications of artificial intelligence in dental implant planning: a systematic review. Bioengineering, 2024;11(8):778. https://doi.org/10.3390/bioengineering11080778.
76. Wu, Z., Yu, X., Wang, F., et al. Application of artificial intelligence in dental implant prognosis: a scoping review. J Dent. 2024;144:104924. https://doi.org/10.1016/j.jdent.2024.104924.
77. Revilla-León, M., Gómez-Polo, M., Vyas, S., et al. Artificial intelligence applications in implant dentistry: A systematic review. J Prosth Dent. 2023;129(2):293–300. https://doi.org/10.1016/j.prosdent.2021.05.008.
78. Alqutaibi, A.Y., Algabri, R.S., Elawady, D., et al. Advancements in artificial intelligence algorithms for dental implant identification: a systematic review with meta-analysis. J Prosth Dent. 2025;134(4):1089–1098. https://doi.org/10.1016/j.prosdent.2023.11.027.
79. Tomohisa O, Kamio T, Maeda Y, et al. Application of medical imaging and 3D printing technology in teaching the handling of novel medicine in periodontal surgery. Cureus. 2022;14(9): e29271. https://doi.org/10.7759/cureus.29271.
80. Zaheer, M.U., Razzaq, M.H., Aycan, M.F., et al. AI-assisted design and evaluation of SLM‐Ti64 implants for enhanced bone regeneration. Adv Healthcare Mat. 2025;e03154. https://doi.org/10.1002/adhm.202503154.
81. Joshi, N., Patil, S., hatrak, P. March design and development of porous titanium alloy dental implant: a review. AIP Conf Proc. 2025;3227(1):020007. https://doi.org/10.1063/5.0241968.
82. Chen, Z., Liu, Y., Xie, X., et al. Influence of bone density on the accuracy of artificial intelligence-guided implant surgery: an in vitro study. J Pros Dent. 2024;131(2):254–261. https://doi.org/10.1016/j.prosdent.2021.07.019.
83. Zaww, K., Abbas, H., Sáenz, J.R.V., et al. AI-driven innovations for dental implant treatment planning: a systematic review. J Pros Res. 2025. https://doi.org/10.2186/jpr.JPR_D_24_00338.
84. Verma, A., Singh, S.V., Arya, D., et al. Mechanical failures of dental implants and supported prostheses: a systematic review. J Oral Biol Craniofac Res. 2023;13(2):306–314. https://doi.org/10.1016/j.jobcr.2023.02.009.
85. Romanos, G.E., Fischer, G.A., Delgado-Ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int J Mol Sci. 2021;22(3):1067. https://doi.org/10.3390/ijms22031067.
86. Kashi, A., and Saha, S. Failure mechanisms of medical implants and their effects on outcomes. In: Biointegration of medical implant materials. Sharma, C.P. Woodhead Publishing: Cambridge, UK; 2020; pp. 407–432. https://doi.org/10.1016/B978-0-08-102680-9.00015-9.
87. Gherde, C., Dhatrak, P., Nimbalkar, S., et al. A comprehensive review of factors affecting fatigue life of dental implants. Mat Today Proc. 2021;43:1117–1123. https://doi.org/10.1016/j.matpr.2020.08.414.
88. Markarian, R.A., Galles, D.P., França, F.M. Dental implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling. J Pros Dent. 2022;128(3):450–457. https://doi.org/10.1016/j.prosdent.2020.08.052.
89. Sailer, I., Karasan, D., Todorovic, A., et al. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130–144. https://doi.org/10.1111/prd.12416.
90. Chen, L., Tong, Z., Luo, H., et al. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci. 2023;15(1):49. https://doi.org/10.1038/s41368-023-00256-x.
91. Ossowska, A., and Zieliński, A. The mechanisms of degradation of titanium dental implants. Coatings. 2020;10(9):836. https://doi.org/10.3390/coatings10090836.
92. Saha, S., and Roy, S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: a literature review. Materials. 2022;16(1):161. https://doi.org/10.3390/ma16010161.
93. Souza, J.C., Apaza-Bedoya, K., Benfatti, C.A., et al. A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals. 2020;10(9):1272. https://doi.org/10.3390/met10091272.
94. Rodríguez-Rojas, F., Kovylina, M., Pinilla-Cienfuegos, E., et al. Effect of a DLC film on the sliding-wear behaviour of Ti-6Al-4V: implications for dental implants. Surf Coat Technol. 2023;460:129409. https://doi.org/10.1016/j.surfcoat.2023.129409.
95. Gaur, S., Agnihotri, R., Albin, S. Bio‐tribocorrosion of titanium dental implants and its toxicological implications: a scoping review. Sci World J. 2022:4498613. https://doi.org/10.1155/2022/4498613.
96. Levin, L. Nonsurgical and surgical management of biologic complications around dental implants: peri-implant mucositis and peri-implantitis. Quintessence Int. 2020;51(10):810–820. https://doi.org/10.3290/j.qi.a44813.
97. López-Valverde, N., Flores-Fraile, J., Ramírez, J.M., et al. Bioactive surfaces vs. conventional surfaces in titanium dental implants: a comparative systematic review. J Clin Med. 2020;9(7):2047. https://doi.org/10.3390/jcm9072047.
98. Eftekhar Ashtiani, R., Alam, M., Tavakolizadeh, S., et al. The role of biomaterials and biocompatible materials in implant‐supported dental prosthesis. Evid Based Comp Altern Med. 2021:3349433. https://doi.org/10.1155/2021/3349433.
99. Ngo, H.X., Bai, Y., Sha, J., et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery. Materials. 2021;15(1):150. https://doi.org/10.3390/ma15010150.
100. Sonaye, S.Y., Dal-Fabbro, R., Bottino, M.C., et al. Osseointegration of 3D-printable polyetheretherketone–magnesium phosphate bioactive composites for craniofacial and orthopedic implants. ACS Biomat Sci Eng. 2025;11(2):1060–1071. https://doi.org/10.1021/acsbiomaterials.4c01597.
101. Wychowański, P., Starzyńska, A., Adamska, P., et al. Methods of topical administration of drugs and biological active substances for dental implants—a narrative review. Antibiotics. 2021;10(8):919. https://doi.org/10.3390/antibiotics10080919.
102. Dua, R., Jones, H., Noble, P.C. Evaluation of bone formation on orthopedic implant surfaces using an ex vivo bone bioreactor system. Sci Rep. 2021;11(1):22509. https://doi.org/10.1038/s41598-021-02070-z.
103. Naig, P.J., Kuo, Z.Y., Chung, M.F., et al. Enhancing bone regeneration using blended poly (L-lactide-co-D, L-lactide) and β-tricalcium phosphate nanofibrous periodontal biodegradable membranes. Polymers. 2025;17(3):256. https://doi.org/10.3390/polym17030256.
104. Ni, X., Feng, J., Liang, M., et al. Enhancing bone repair with β-TCP-based composite scaffolds: a review of design strategies and biological mechanisms. Orthoped Res Rev. 2025;17:313–340. https://doi.org/10.2147/ORR.S525959.
105. Wang, W., Liu, P., Zhang, B., et al. Fused deposition modeling printed PLA/nano β-TCP composite bone tissue engineering scaffolds for promoting osteogenic induction function. Int J Nanomed. 2023;18:5815–5830. https://doi.org/10.2147/IJN.S416098.
106. Kucko, S.K., Raeman, S.M., Keenan, T.J. Current advances in hydroxyapatite- and β-tricalcium phosphate-based composites for biomedical applications: a review. Biomed Mat Devices. 2023;1(1):49–65. https://doi.org/10.1007/s44174-022-00037-w.
107. Abodunrin, O.D., El Mabrouk, K., Bricha, M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mat Chem B. 2023;11(5):955–973. https://doi.org/10.1039/D2TB02505A.
108. Chand, P., Malik, M., Prasad, T. Bioactive glass for applications in implants: a review. Chem Select. 2024;9(29):e202304337. https://doi.org/10.1002/slct.202304337.
109. Huang, C., Yu, M., Li, H., et al. Research progress of bioactive glass and its application in orthopedics. Adv Mat Interfaces. 2021;8(22):2100606. https://doi.org/10.1002/admi.202100606.
110. Al-Harbi, N., Mohammed, H., Al-Hadeethi, Y., et al. Silica-based bioactive glasses and their applications in hard tissue regeneration: a review. Pharmaceuticals. 2021;14(2):75. https://doi.org/10.3390/ph14020075.
111. Zhang, X., Zeng, D., Li, N., et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6:19361. https://doi.org/10.1038/srep19361.
112. de Lima Barbosa, R., Stellet Lourenço, E., de Azevedo dos Santos, J.V., et al. The effects of platelet-rich fibrin in the behavior of mineralizing cells related to bone tissue regeneration—a scoping review of in vitro evidence. J Funct Biomat. 2023;14(10):503. https://doi.org/10.3390/jfb14100503.
113. Blanco, J., García, A., Hermida‐Nogueira, L., et al. How to explain the beneficial effects of leukocyte‐and platelet‐rich fibrin. Periodontol 2000. 2025;97(1):74–94. https://doi.org/10.1111/prd.12570.
114. Farshidfar, N., Apaza Alccayhuaman, K.A., Estrin, N.E., et al. Advantages of horizontal centrifugation of platelet‐rich fibrin in regenerative medicine and dentistry. Periodontol 2000. 2025. https://doi.org/10.1111/prd.12625. Epub ahead of print. PMID: 40130760.
115. Tarallo, F., Mancini, L., Pitzurra, L., et al. Use of platelet-rich fibrin in the treatment of grade 2 furcation defects: systematic review and meta-analysis. J Clin Med. 2020;9(7):2104. https://doi.org/10.3390/jcm9072104.
116. Hwan Jung, M., Hun Lee, J., Wadhwa, P., et al. Bone regeneration in peri-implant defect using autogenous tooth biomaterial enriched with platelet-rich fibrin in animal model. App Sci. 2020;10(6):1939. https://doi.org/10.3390/app10061939.
117. On, S.W., Park, S.Y., Yi, S.M., et al. Current status of recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillofacial surgery: should it be continued? Bioengineering. 2023;10(9):1005. https://doi.org/10.3390/bioengineering10091005.
118. Aghaloo, T., Valentini, P., Yardley, R., et al. Application of biologics in maxillary sinus augmentation surgery: a narrative review. Clin Implant Dent Related Res. 2025;27(3):e70004. https://doi.org/10.1111/cid.70004.
119. Soares, C.S., Babo, P.S., Faria, S., et al. Standardized platelet-rich fibrin (PRF) from canine and feline origin: an analysis on its secretome pattern and architectural structure. Cytokine. 2021;148:155695. https://doi.org/10.1016/j.cyto.2021.155695.
120. Nemcakova, I., Litvinec, A., Mandys, V., et al. Coating Ti-6Al-4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep. 2022;12(1):5264. https://doi.org/10.1038/s41598-022-09183-z.
121. Afrashtehfar, K.I., Abuzayeda, M.A., Murray, C.A. Artificial intelligence in reconstructive implant dentistry—current perspectives. Prosthesis. 2024;6(4):767–769. https://doi.org/10.3390/prosthesis6040054.
122. Memon, A.R., Li, J., Egger, J., et al. A review on patient-specific facial and cranial implant design using artificial intelligence (AI) techniques. Expert Rev Med Devices. 2021;18(10):985–994. https://doi.org/10.1080/17434440.2021.1969914.
123. Hu, C., Li, F., Wang, S., et al. The role of artificial intelligence in enhancing personalized learning pathways and clinical training in dental education. Cogent Edu. 2025;12(1):2490425. https://doi.org/10.1080/2331186X.2025.2490425.
124. Pitchika, V., Büttner, M., Schwendicke, F. Artificial intelligence and personalized diagnostics in periodontology: a narrative review. Periodontol 2000. 2024;95(1):220–231. https://doi.org/10.1111/prd.12586.
125. Kumar, N.V., Chakradhar, D., Abhilash, P.M. Advancing bioimplant manufacturing through artificial intelligence. In: Bioimplants manufacturing. 1st ed.; M, P.A., Gajrani, K.K., eds. CRC Press: Boca Raton, USA; 2024; pp. 284–312. https://doi.org/10.1201/9781003509943-13.
126. Najeeb, M., and Islam, S. Artificial intelligence (AI) in restorative dentistry: current trends and future prospects. BMC Oral Health. 2025;25(1):592. https://doi.org/10.1186/s12903-025-05989-1.
127. Elgarba, B.M., Fontenele, R.C., Tarce, M., et al. Artificial intelligence serving pre-surgical digital implant planning: a scoping review. J Dent. 2024;143:104862. https://doi.org/10.1016/j.jdent.2024.104862.
128. Yan, B., Zhang, W., Cai, L., et al. Optics-guided robotic system for dental implant surgery. Chin J Mech Eng. 2022;35(1):55.
https://doi.org/10.1186/s10033-022-00732-1.
129. Huang, Y.C., Huang, Y.C., Ding, S.J. Primary stability of implant placement and loading related to dental implant materials and designs: a literature review. J Dent Sci. 2023;18(4):1467–1476. https://doi.org/10.1016/j.jds.2023.06.010.
130. Aiquel, L.L., Pitta, J., Antonoglou, G.N., et al. Does the timing of implant placement and loading influence biological outcomes of implant‐supported multiple‐unit fixed dental prosthesis—a systematic review with meta‐analyses. Clin Oral Implants Res. 2021;32(Suppl 21):5–27. https://doi.org/10.1111/clr.13860.
131. D’Amico, C., Bocchieri, S., Sambataro, S., et al. Occlusal load considerations in implant-supported fixed restorations. Prosthesis. 2020;2(4):252–265. https://doi.org/10.3390/prosthesis2040023.
132. Zhao, G., Zhou, Y., Shi, S., et al. Long-term clinical outcomes of immediate loading versus non-immediate loading in single-implant restorations: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2022;51(10):1345–1354. https://doi.org/10.1016/j.ijom.2022.03.057.
133. Francisco, H., Marques, D., Pinto, C., et al. Is the timing of implant placement and loading influencing esthetic outcomes in single‐tooth implants?—a systematic review. Clin Oral Implant Res. 2021;32(Suppl 21):28–55. https://doi.org/10.1111/clr.13811.
134. Pardo-Zamora, G., Ortiz-Ruíz, A.J., Camacho-Alonso, F., et al. Short dental implants (≤ 8.5 mm) versus standard dental implants (≥10 mm): a one-year post-loading prospective observational study. Int J Environ Res Public Health. 2021;18(11):5683. https://doi.org/10.3390/ijerph18115683.
135. Yang, Q., Guan, X., Wang, B., et al. Implant survival rate and marginal bone loss with the all-on-4 immediate-loading strategy: a clinical retrospective study with 1 to 4 years of follow-up. J Prost Dent. 2023;130(6):849–857. https://doi.org/10.1016/j.prosdent.2021.12.020.
136. Valera-Jiménez, J.F., Burgueño-Barris, G., Gómez-González, S., et al. Finite element analysis of narrow dental implants. Dent Mat. 2020;36(7):927–935. https://doi.org/10.1016/j.dental.2020.04.013.
137. Atieh, M.A., Almutairi, Z., Amir-Rad, F., et al. A retrospective analysis of biological complications of dental implants. Int J Dent. 2022;2022:1545748. https://doi.org/10.1155/2022/1545748.
138. Chochlidakis, K., Ercoli, C., Einarsdottir, E., et al. Implant survival and biologic complications of implant fixed complete dental prostheses: an up to 5-year retrospective study. J Prost Dent. 2022;128(3):375–381. https://doi.org/10.1016/j.prosdent.2020.12.011.
139. Monje, A., and Nart, J. Management and sequelae of dental implant removal. Periodontol 2000. 2022;88(1):182–200. https://doi.org/10.1111/prd.12418.
140. Thoma, D.S., Gil, A., Hämmerle, C.H., et al. Management and prevention of soft tissue complications in implant dentistry. Periodontol 2000. 2022;88(1):116–129. https://doi.org/10.1111/prd.12415.
141. Kotsakis, G.A., and Romanos, G.E. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000. 2022;88(1):52–63. https://doi.org/10.1111/prd.12410.
142. Adler, L., Buhlin, K., Jansson, L. Survival and complications: a 9‐to 15‐year retrospective follow‐up of dental implant therapy. J Oral Rehab. 2020;47(1):67–77. https://doi.org/10.1111/joor.12866.
143. Tsigarida, A., Chochlidakis, K., Fraser, D., et al. Peri-implant diseases and biologic complications at implant-supported fixed dental prostheses in partially edentulous patients. J Prosthodont. 2020;29(5):429–435. https://doi.org/10.1111/jopr.13165.
144. Silva, R.C., Agrelli, A., Andrade, A.N., et al. Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials. 2022;15(9):3150. https://doi.org/10.3390/ma15093150.
145. Wychowański, P., Starzyńska, A., Adamska, P., et al. Methods of topical administration of drugs and biological active substances for dental implants—a narrative review. Antibiotics. 2021;10(8):919. https://doi.org/10.3390/antibiotics10080919.
146. Karlsson, K., Derks, J., Wennström, J.L., et al. Occurrence and clustering of complications in implant dentistry. Clin Oral Implants Res. 2020;31(10):1002–1009. https://doi.org/10.1111/clr.13647.
147. Roccuzzo, A., Imber, J.C., Marruganti, C., et al. Clinical outcomes of dental implants in patients with and without history of periodontitis: a 20-year prospective study. J Clin Periodontol. 2022;49(12):1346–1356. https://doi.org/10.1111/jcpe.13716.
148. D’Ambrosio, F., Amato, A., Chiacchio, A., et al. Do systemic diseases and medications influence dental implant osseointegration and dental implant health? An umbrella review. Dent J. 2023;11(6):146. https://doi.org/10.3390/dj11060146.
149. Urban, I., Sanz‐Sánchez, I., Monje, A., et al. Complications and treatment errors in peri‐implant hard tissue management. Periodontol 2000. 2023;92(1):278–298. https://doi.org/10.1111/prd.12472.
150. Cortes-Breton Brinkmann, J., García-Gil, I., Pedregal, P., et al. Long-term clinical behavior and complications of intentionally tilted dental implants compared with straight implants supporting fixed restorations: a systematic review and meta-analysis. Biology. 2021;10(6):509. https://doi.org/10.3390/biology10060509.
151. Lampkin, A., Bensoussan, J., Curtis, D., et al. Effect of self-reported clinician experience level on perceptions of the relative rankings of risk factors for biological complications with dental implant therapy. J Prosth Dent. 2025;133(1):209–214. https://doi.org/10.1016/j.prosdent.2023.03.019.
152. Schwarz, F., and Ramanauskaite, A. It is all about peri‐implant tissue health. Periodontol 2000. 2022;88(1):9–12. https://doi.org/10.1111/prd.12407.
153. Dioguardi, M., Spirito, F., Quarta, C., et al. Guided dental implant surgery: systematic review. J Clin Med. 2023;12(4):1490. https://doi.org/10.3390/jcm12041490.
154. Schierz, O., and Reissmann, D.R. Dental patient-reported outcomes—the promise of dental implants. J Evid Dent Pract. 2021;21(1):101541. https://doi.org/10.1016/j.jebdp.2021.101541.
155. Wang, I.C., Barootchi, S., Tavelli, L., et al. The peri‐implant phenotype and implant esthetic complications. Contemporary overview. J Esthet Restor Dent. 2021;33(1):212–223. https://doi.org/10.1111/jerd.12709.
156. Cervino, G., Meto, A., Fiorillo, L., et al. Surface treatment of the dental implant with hyaluronic acid: an overview of recent data. Int J Environ Res Public Health. 2021;18(9):4670. https://doi.org/10.3390/ijerph18094670.
157. Comino-Garayoa, R., Cortés-Bretón Brinkmann, J., Peláez, J., et al. Allergies to titanium dental implants: what do we really know about them? A scoping review. Biology. 2020;9(11):404. https://doi.org/10.3390/biology9110404.
158. Cortellini, P., Stalpers, G., Mollo, A., et al. Periodontal regeneration versus extraction and dental implant or prosthetic replacement of teeth severely compromised by attachment loss to the apex: a randomized controlled clinical trial reporting 10-year outcomes, survival analysis and mean cumulative cost of recurrence. J Clin Periodontol. 2020;47(6):768–776. https://doi.org/10.1111/jcpe.13289.
159. Barrak, F.N., Li, S., Muntane, A.M., et al. Particle release from implantoplasty of dental implants and impact on cells. Int J Implant Dent. 2020;6(1):50. https://doi.org/10.1186/s40729-020-00247-1.
160. Agliardi, E.L., Panigatti, S., Romeo, D., et al. Clinical outcomes and biological and mechanical complications of immediate fixed prostheses supported by zygomatic implants: a retrospective analysis from a prospective clinical study with up to 11 years of follow‐up. Clin Implant Dent Related Res. 2021;23(4):612–624. https://doi.org/10.1111/cid.13017.
161. Omori, Y., Lang, N.P., Botticelli, D., et al. Biological and mechanical complications of angulated abutments connected to fixed dental prostheses: a systematic review with meta‐analysis. J Oral Rehab. 2020;47(1):101–111. https://doi.org/10.1111/joor.12877.
2. Kumar, V., Seth, J., Aeran, M., et al. From surface to success: how implant surfaces shape osseointegration. IJPI. 2024;9(2):58–63. https://doi.org/10.18231/j.ijpi.2024.013.
3. Joshi, N.P., Agwani, K.M., Mathur, R., et al. Rooted in bone: the role of osseointegration in dental implantology. IJISRT. 2025;10(4):2164–2169. https://doi.org/10.38124/ijisrt/25apr1088.
4. Pandey, C., Rokaya, D., Bhattarai, B.P. Contemporary concepts in osseointegration of dental implants: a review. BioMed Res Int. 2022:6170452. https://doi.org/10.1155/2022/6170452.
5. Cooper, L.F., and Shirazi, S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Front Oral Maxillofac Med. 2022;4:39. https://doi.org/10.21037/fomm-21-77.
6. Sharma, P., Mishra, V., Murab, S. Unlocking osseointegration: surface engineering strategies for enhanced dental implant integration. ACS Biomat Sci Eng. 2025;11(1):67–94. https://doi.org/10.1021/acsbiomaterials.4c01178.
7. Beschnidt, S.M., Cacaci, C., Dedeoglu, K., et al. Implant success and survival rates in daily dental practice: 5-year results of a non-interventional study using CAMLOG SCREW-LINE implants with or without platform-switching abutments. Int J Implant Dent. 2018;4(1):33. https://doi.org/10.1186/s40729-018-0145-3.
8. Waghmare, G., Waghmare, K., Bagde, S., et al. Materials evolution in dental implantology: a comprehensive review. J Adv Res Appl Mech. 2024;123(1):75–100. https://doi.org/10.37934/aram.123.1.75100.
9. Manfredini, M., Poli, P.P., Giboli, L., et al.Clinical factors on dental implant fractures: a systematic review. Dent J. 2024;12(7):200. https://doi.org/10.3390/dj12070200.
10. Kupka, J.R., König, J., Al-Nawas, B., et al. How far can we go? A 20-year meta-analysis of dental implant survival rates. Clin Oral Invest. 2024;28(10):541. https://doi.org/10.1007/s00784-024-05929-3.
11. Liu, C., Liu, Y., Xie, R., et al. The evolution of robotics: research and application progress of dental implant robotic systems. Int J Oral Sci. 2024;16(1):28. https://doi.org/10.1038/s41368-024-00296-x.
12. Hakim, L.K., Yari, A., Nikparto, N., et al. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24(1):126. https://doi.org/10.1186/s12903-024-03911-9.
13. Bahrami, R., Pourhajibagher, M., Nikparto, N., et al. Robot-assisted dental implant surgery procedure: a literature review. J Dent Sci. 2024;19(3):1359–1368. https://doi.org/10.1016/j.jds.2024.03.011.
14. Wu, X.Y., Shi, J.Y., Qiao, S.C., et al. Accuracy of robotic surgery for dental implant placement: a systematic review and meta-analysis. Clin Oral Implants Res. 2024;35(6):598–608. https://doi.org/10.1111/clr.14255.
15. Maher, N., Mahmood, A., Fareed, M.A., et al. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res. 2025;72:265–286. https://doi.org/10.1016/j.jare.2024.07.016.
16. Accioni, F., Vázquez, J., Merinero, M., et al. Latest trends in surface modification for dental implantology: innovative developments and analytical applications. Pharmaceutics, 2022;14(2):455. https://doi.org/10.3390/pharmaceutics14020455.
17. Kochar, S.P., Reche, A., Paul, P. The etiology and management of dental implant failure: a review. Cureus. 2022;14(10):e30455. https://doi.org/10.7759/cureus.30455.
18. Sailer, I., Karasan, D., Todorovic, A., et al. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130–144. https://doi.org/10.1111/prd.12416.
19. Papadakis, I., Spanou, A., Kalyvas, D. Success rate and safety of dental implantology in patients treated with antiresorptive medication: a systematic review. J Oral Implantol. 2021:47(2):169–180. https://doi.org/10.1563/aaid-joi-D-19-00088.
20. Ebenezer, S., Kumar, V.V., Thor, A. Basics of dental implantology for the oral surgeon. In Oral and maxillofacial surgery for the clinician. Bonanthaya, K., Panneerselvam, E., eds. Springer Nature: Singapore, 2021; pp. 385–405. https://doi.org/10.1007/978-981-15-1346-6_18.
21. Matos, G.R.M. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg. 2021;20(1):1–4. https://doi.org/10.1007/s12663-020-01437-5.
22. Lokwani, B.V., Gupta, D., Agrawal, R.S., et al. The use of concentrated growth factor in dental implantology: a systematic review. J Indian Prosthodont Soc. 2020;20(1):3–10. https://doi.org/10.4103/jips.jips_375_19.
23. Zhang, Y., Gulati, K., Li, Z., et al. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials. 2021;11(10):2489. https://doi.org/10.3390/nano11102489.
24. Lang, N.P., Berglundh, T., Giannobile, W.V., et al. Lindhe's clinical periodontology and implant dentistry, 7th ed.; John Wiley: Hoboken, NJ, USA; 2021; pp. 3–49.
25. Dutta, S.R., Passi, D., Singh, P., et al. Risks and complications associated with dental implant failure: critical update. Nat J Maxillofac Surg. 2020;11(1):14–19. https://doi.org/10.4103/njms.NJMS_75_16.
26. Dutta, S.R., Passi, D., Singh, P., et al. Risks and complications associated with dental implant failure: Critical update. Nat J Maxillofac Surg. 2020;11(1):14–19. https://doi.org/10.4103/njms.NJMS_75_16.
27. Pellegrino, G., Bellini, P., Cavallini, P.F., et al. Dynamic navigation in dental implantology: the influence of surgical experience on implant placement accuracy and operating time. An in vitro study. Int J Environ Res Public Health. 2020;17(6):2153. https://doi.org/10.3390/ijerph17062153.
28. Nulty, A. A literature review on prosthetically designed guided implant placement and the factors influencing dental implant success. Br Dent J. 2024;236(3):169–180. https://doi.org/10.1038/s41415-024-7050-3.
29. Jia, S., Wang, G., Zhao, Y., et al. Accuracy of an autonomous dental implant robotic system versus static guide-assisted implant surgery: a retrospective clinical study. J Pros Dent. 2025;133(3):771–779. https://doi.org/10.1016/j.prosdent.2023.04.027.
30. Li, Z., Xie, R., Bai, S., et al. Implant placement with an autonomous dental implant robot: a clinical report. J Prosth Dent. 2025;133(2):340–345. https://doi.org/10.1016/j.prosdent.2023.02.014.
31. Panahi, O. Smart robotics for personalized dental implant solutions. Dental. 2025;7(1):21. https://doi.org/10.35702/dent.10021.
32. Kang, D.Y., Duong, H.P., Park, J.C. Application of deep learning in dentistry and implantology. J Implant Appl Sci. 2020;24(3):148–181. https://doi.org/10.32542/implantology.202015.
33. Do, T.A., Le, H.S., Shen, Y.W., et al. Risk factors related to late failure of dental implant—a systematic review of recent studies. Int J Environ Res Public Health. 2020;17(11):3931. https://doi.org/10.3390/ijerph17113931.
34. Mohammad‐Rahimi, H., Motamedian, S.R., Pirayesh, Z., et al. Deep learning in periodontology and oral implantology: a scoping review. J Periodont Res. 2022;57(5):942–951. https://doi.org/10.1111/jre.13037.
35. Kligman, S., Ren, Z., Chung, C.H., et al. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med. 2021;10(8):1641. https://doi.org/10.3390/jcm10081641.
36. Lee, J.H., Kim, Y.T., Lee, J.B., et al A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: a multi-center study. Diagnostics. 2020;10(11):910. https://doi.org/10.3390/diagnostics10110910.
37. Kim, J.C., Lee, M., Yeo, I.S.L. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. Mat Horiz. 2022;9(5):1387–1411. https://doi.org/10.1039/D1MH01621K.
38. Gao, J., Pan, Y., Gao, Y., et al. Research progress on the preparation process and material structure of 3D-printed dental implants and their clinical applications. Coatings. 2024;14(7):781. https://doi.org/10.3390/coatings14070781.
39. Hossain, N., Mobarak, M.H., Islam, M.A., et al. Recent development of dental implant materials, synthesis process, and failure – a review. Results Chem. 2023;6:101136. https://doi.org/10.1016/j.rechem.2023.101136.
40. Jambhulkar, N., Jaju, S., Raut, A., et al. A review on surface modification of dental implants among various implant materials. Mat Today Proc. 2023;72:3209–3215. https://doi.org/10.1016/j.matpr.2022.12.022.
41. Alagatu, A., Dhapade, D., Gajbhiye, M., et al. Review of different material and surface modification techniques for dental implants. Mat Today Proc. 2022;60:2245–2249. https://doi.org/10.1016/j.matpr.2022.03.338.
42. Kurup, A., Dhatrak, P., Khasnis, N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: a review. Mats Today Proc. 2021;39:84–90. https://doi.org/10.1016/j.matpr.2020.06.163.
43. Sun, X.D., Liu, T.T., Wang, Q.Q., et al. Surface modification and functionalities for titanium dental implants. ACS Biomat Sci Eng. 2023;9(8):4442–4461. https://doi.org/10.1021/acsbiomaterials.3c00183.
44. Herráez-Galindo, C., Rizo-Gorrita, M., Maza-Solano, S., et al. A review on CAD/CAM yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and polymethyl methacrylate (PMMA) and their biological behavior. Polymers. 2022;14(5):906. https://doi.org/10.3390/polym14050906.
45. Bai, Z., Wang, B., Bian, J., et al. Antibacterial and osteogenic activities of thiolated and aminated yttria-stabilized tetragonal zirconia polycrystal with tolerance to low temperature degradation. Ceramics Int. 2023;49(23):37817–37828. https://doi.org/10.1016/j.ceramint.2023.09.110.
46. Cho, Y.E., Lim, Y.J., Han, J.S., et al. Effect of yttria content on the translucency and masking ability of yttria-stabilized tetragonal zirconia polycrystal. Materials. 2020;13(21):4726. https://doi.org/10.3390/ma13214726.
47. Küçükekenci, A.S., Çakmak, G., Güven, M.E., et al. Implant-supported fixed complete denture frameworks in additively and subtractively manufactured high-performance polymers: fabrication and fit accuracy. J Dent. 2025;105838. https://doi.org/10.1016/j.jdent.2025.105838.
48. Alqutaibi, A.Y., Alghauli, M.A., Algabri, R.S., et al. Applications, modifications, and manufacturing of polyetheretherketone (PEEK) in dental implantology: a comprehensive critical review. Int Mat Rev. 2025;70(2):103–136. https://doi.org/10.1177/09506608251314251.
49. Zol, S.M., Alauddin, M.S., Said, Z., et al. Description of poly (aryl-ether-ketone) materials (PAEKs), polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) for application as a dental material: a materials science review. Polymers. 2023;15(9):2170. https://doi.org/10.3390/polym15092170.
50. McMullan, R., Golbang, A., Salma-Ancane, K., et al. Review of 3D printing of polyaryletherketone/apatite composites for lattice structures for orthopedic implants. Applied Sci. 2025;15(4):1804. https://doi.org/10.3390/app15041804.
51. Menini, M., Delucchi, F., Bagnasco, F., et al. Shock absorption capacity of high-performance polymers for dental implant-supported restorations: in vitro study. Dent J. 2024;12(4):111. https://doi.org/10.3390/dj12040111.
52. Dong, H., Liu, H., Zhou, N., et al. Surface-modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012. https://doi.org/10.3390/coatings10111012.
53. Nasr Azadani, M., Zahedi, A., Bowoto, O.K., et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomat. 2022;11(1):1–26. https://doi.org/10.1007/s40204-022-00182-x.
54. Herber, V., Okutan, B., Antonoglou, G., et al. Bioresorbable magnesium-based alloys as novel biomaterials in oral bone regeneration: general review and clinical perspectives. J Clin Med. 2021;10(9):1842. https://doi.org/10.3390/jcm10091842.
55. Omigbodun, F.T., Oladapo, B.I., Osa-uwagboe, N. Exploring the frontier of polylactic acid/hydroxyapatite composites in bone regeneration and their revolutionary biomedical applications – a review. J Reinforced Plast Comp. 2024;0(0). https://doi.org/10.1177/07316844241278045.
56. Topuz, M. Hydroxyapatite – Al2O3-reinforced poly(lactic acid) hybrid coatings on magnesium: characterization, mechanical and in vitro bioactivity properties. Surf Interfaces. 2023;37:102724. https://doi.org/10.1016/j.surfin.2023.102724.
57. Nilawar, S., Uddin, M., Chatterjee, K. Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments. Mat Adv. 2021;2(24):7820–7841. https://doi.org/10.1039/D1MA00733E.
58. Eldokmak, M.M., Essawy, M.M., Abdelkader, S., et al. Bioinspired poly-dopamine/nano-hydroxyapatite: an upgrading biocompatible coat for 3D-printed polylactic acid scaffold for bone regeneration. Odontology. 2025;113(1):89–100. https://doi.org/10.1007/s10266-024-00945-x.
59. Zhao, F., Yang, Z., Liu, L., et al. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. Biomat Translat. 2020;1(1):82. https://doi.org/10.3877/cma.j.issn.2096-112X.2020.01.008.
60. Cannillo, V., Salvatori, R., Bergamini, S., et al. Bioactive glasses in periodontal regeneration: existing strategies and future prospects—a literature review. Materials. 2022;15(6):2194. https://doi.org/10.3390/ma15062194.
61. Ali, N., Lone, N.F., Siddiquee, A.N., et al. A novel hybrid approach to develop bioresorbable material. J Orthopaed. 2022;34:61–66. https://doi.org/10.1016/j.jor.2022.08.012.
62. Nogueira, D.M.B., de Oliveira Rosso, M.P., Buchaim, D.V., et al. Update on the use of 45S5 bioactive glass in the treatment of bone defects in regenerative medicine. World J Orthoped. 2024;15(3):204–214. https://doi.org/10.5312/wjo.v15.i3.204.
63. Manesh, M.B., Vatankhah, N., Manesh, F.B. Comparison of microbiota in zirconia and titanium implants: a qualitative systematic review. Int Dent J. 2025;75(1):51–58. https://doi.org/10.1016/j.identj.2024.08.001.
64. Zhang, L.C., Chen, L.Y., Wang, L. Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Adv Eng Mat. 2020;22(5):1901258. https://doi.org/10.1002/adem.202070017
https://doi.org/10.1002/adem.201901258.
65. Losic, D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opinion Drug Deliv. 2021;18(10):1355–1378. https://doi.org/10.1080/17425247.2021.1928071.
66. Li, M., Cokic, S., Van Meerbeek, B., et al. Novel zirconia ceramics for dental implant materials. J Mat Sci Technol. 2025;210:97–108. https://doi.org/10.1016/j.jmst.2024.05.041.
67. Hong, G., Liao, M., Wu, T., et al. Improving osteogenic activity of Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) surfaces by grafting of silanes with different end groups. App Surf Sci. 2021;570:vp. https://doi.org/10.1016/j.apsusc.2021.151144.
68. Fiorin, L., Moris, I.C., Faria, A.C., et al. Effect of different grinding protocols on surface characteristics and fatigue behavior of yttria-stabilized zirconia polycrystalline: an in vitro study. J Prosth Dent. 2020;124(4):486.e1–486.e8. https://doi.org/10.1016/j.prosdent.2020.03.016.
69. Dobrzyńska‐Mizera, M., Dodda, J.M., Liu, X., et al. Engineering of bioresorbable polymers for tissue engineering and drug delivery applications. Adv Healthcare Mat. 2024;13(30):e2401674. https://doi.org/10.1002/adhm.202401674.
70. Narayanan, S., Singh, M., Kandasubramanian, B. Innovative approaches in regenerative medicine for the development of sustainable and bioactive implants. Biomed Mat Devices. 2025;1–25. https://doi.org/10.1007/s44174-025-00397-z.
71. Chio, A., Mak, A. The digital workflow in implant dentistry. In Prac Proc Implant Dent. Ho, C.C.K. John Wiley: Hoboken, NJ, USA; 2021; pp. 335-349. https://doi.org/10.1002/9781119399186.ch34.
72. Pradies, G., Morón‐Conejo, B., Martínez‐Rus, F., et al. Current applications of 3D printing in dental implantology: a scoping review mapping the evidence. Clin Oral Implants Res. 2024;35(8):1011–1032. https://doi.org/10.1111/clr.14198.
73. Papaspyridakos, P., Chen, Y.W., Alshawaf, B., et al. Digital workflow: in vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J Prosth Dent. 2020;124(5):589–593. https://doi.org/10.1016/j.prosdent.2019.10.029.
74. Altalhi, A.M., Alharbi, F.S., Alhodaithy, M.A., et al. The impact of artificial intelligence on dental implantology: a narrative review. Cureus. 2023;15(10):e47941. https://doi.org/10.7759/cureus.47941.
75. Macrì, M., D’Albis, V., D’Albis, G., et al. The role and applications of artificial intelligence in dental implant planning: a systematic review. Bioengineering, 2024;11(8):778. https://doi.org/10.3390/bioengineering11080778.
76. Wu, Z., Yu, X., Wang, F., et al. Application of artificial intelligence in dental implant prognosis: a scoping review. J Dent. 2024;144:104924. https://doi.org/10.1016/j.jdent.2024.104924.
77. Revilla-León, M., Gómez-Polo, M., Vyas, S., et al. Artificial intelligence applications in implant dentistry: A systematic review. J Prosth Dent. 2023;129(2):293–300. https://doi.org/10.1016/j.prosdent.2021.05.008.
78. Alqutaibi, A.Y., Algabri, R.S., Elawady, D., et al. Advancements in artificial intelligence algorithms for dental implant identification: a systematic review with meta-analysis. J Prosth Dent. 2025;134(4):1089–1098. https://doi.org/10.1016/j.prosdent.2023.11.027.
79. Tomohisa O, Kamio T, Maeda Y, et al. Application of medical imaging and 3D printing technology in teaching the handling of novel medicine in periodontal surgery. Cureus. 2022;14(9): e29271. https://doi.org/10.7759/cureus.29271.
80. Zaheer, M.U., Razzaq, M.H., Aycan, M.F., et al. AI-assisted design and evaluation of SLM‐Ti64 implants for enhanced bone regeneration. Adv Healthcare Mat. 2025;e03154. https://doi.org/10.1002/adhm.202503154.
81. Joshi, N., Patil, S., hatrak, P. March design and development of porous titanium alloy dental implant: a review. AIP Conf Proc. 2025;3227(1):020007. https://doi.org/10.1063/5.0241968.
82. Chen, Z., Liu, Y., Xie, X., et al. Influence of bone density on the accuracy of artificial intelligence-guided implant surgery: an in vitro study. J Pros Dent. 2024;131(2):254–261. https://doi.org/10.1016/j.prosdent.2021.07.019.
83. Zaww, K., Abbas, H., Sáenz, J.R.V., et al. AI-driven innovations for dental implant treatment planning: a systematic review. J Pros Res. 2025. https://doi.org/10.2186/jpr.JPR_D_24_00338.
84. Verma, A., Singh, S.V., Arya, D., et al. Mechanical failures of dental implants and supported prostheses: a systematic review. J Oral Biol Craniofac Res. 2023;13(2):306–314. https://doi.org/10.1016/j.jobcr.2023.02.009.
85. Romanos, G.E., Fischer, G.A., Delgado-Ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int J Mol Sci. 2021;22(3):1067. https://doi.org/10.3390/ijms22031067.
86. Kashi, A., and Saha, S. Failure mechanisms of medical implants and their effects on outcomes. In: Biointegration of medical implant materials. Sharma, C.P. Woodhead Publishing: Cambridge, UK; 2020; pp. 407–432. https://doi.org/10.1016/B978-0-08-102680-9.00015-9.
87. Gherde, C., Dhatrak, P., Nimbalkar, S., et al. A comprehensive review of factors affecting fatigue life of dental implants. Mat Today Proc. 2021;43:1117–1123. https://doi.org/10.1016/j.matpr.2020.08.414.
88. Markarian, R.A., Galles, D.P., França, F.M. Dental implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling. J Pros Dent. 2022;128(3):450–457. https://doi.org/10.1016/j.prosdent.2020.08.052.
89. Sailer, I., Karasan, D., Todorovic, A., et al. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130–144. https://doi.org/10.1111/prd.12416.
90. Chen, L., Tong, Z., Luo, H., et al. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci. 2023;15(1):49. https://doi.org/10.1038/s41368-023-00256-x.
91. Ossowska, A., and Zieliński, A. The mechanisms of degradation of titanium dental implants. Coatings. 2020;10(9):836. https://doi.org/10.3390/coatings10090836.
92. Saha, S., and Roy, S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: a literature review. Materials. 2022;16(1):161. https://doi.org/10.3390/ma16010161.
93. Souza, J.C., Apaza-Bedoya, K., Benfatti, C.A., et al. A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals. 2020;10(9):1272. https://doi.org/10.3390/met10091272.
94. Rodríguez-Rojas, F., Kovylina, M., Pinilla-Cienfuegos, E., et al. Effect of a DLC film on the sliding-wear behaviour of Ti-6Al-4V: implications for dental implants. Surf Coat Technol. 2023;460:129409. https://doi.org/10.1016/j.surfcoat.2023.129409.
95. Gaur, S., Agnihotri, R., Albin, S. Bio‐tribocorrosion of titanium dental implants and its toxicological implications: a scoping review. Sci World J. 2022:4498613. https://doi.org/10.1155/2022/4498613.
96. Levin, L. Nonsurgical and surgical management of biologic complications around dental implants: peri-implant mucositis and peri-implantitis. Quintessence Int. 2020;51(10):810–820. https://doi.org/10.3290/j.qi.a44813.
97. López-Valverde, N., Flores-Fraile, J., Ramírez, J.M., et al. Bioactive surfaces vs. conventional surfaces in titanium dental implants: a comparative systematic review. J Clin Med. 2020;9(7):2047. https://doi.org/10.3390/jcm9072047.
98. Eftekhar Ashtiani, R., Alam, M., Tavakolizadeh, S., et al. The role of biomaterials and biocompatible materials in implant‐supported dental prosthesis. Evid Based Comp Altern Med. 2021:3349433. https://doi.org/10.1155/2021/3349433.
99. Ngo, H.X., Bai, Y., Sha, J., et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery. Materials. 2021;15(1):150. https://doi.org/10.3390/ma15010150.
100. Sonaye, S.Y., Dal-Fabbro, R., Bottino, M.C., et al. Osseointegration of 3D-printable polyetheretherketone–magnesium phosphate bioactive composites for craniofacial and orthopedic implants. ACS Biomat Sci Eng. 2025;11(2):1060–1071. https://doi.org/10.1021/acsbiomaterials.4c01597.
101. Wychowański, P., Starzyńska, A., Adamska, P., et al. Methods of topical administration of drugs and biological active substances for dental implants—a narrative review. Antibiotics. 2021;10(8):919. https://doi.org/10.3390/antibiotics10080919.
102. Dua, R., Jones, H., Noble, P.C. Evaluation of bone formation on orthopedic implant surfaces using an ex vivo bone bioreactor system. Sci Rep. 2021;11(1):22509. https://doi.org/10.1038/s41598-021-02070-z.
103. Naig, P.J., Kuo, Z.Y., Chung, M.F., et al. Enhancing bone regeneration using blended poly (L-lactide-co-D, L-lactide) and β-tricalcium phosphate nanofibrous periodontal biodegradable membranes. Polymers. 2025;17(3):256. https://doi.org/10.3390/polym17030256.
104. Ni, X., Feng, J., Liang, M., et al. Enhancing bone repair with β-TCP-based composite scaffolds: a review of design strategies and biological mechanisms. Orthoped Res Rev. 2025;17:313–340. https://doi.org/10.2147/ORR.S525959.
105. Wang, W., Liu, P., Zhang, B., et al. Fused deposition modeling printed PLA/nano β-TCP composite bone tissue engineering scaffolds for promoting osteogenic induction function. Int J Nanomed. 2023;18:5815–5830. https://doi.org/10.2147/IJN.S416098.
106. Kucko, S.K., Raeman, S.M., Keenan, T.J. Current advances in hydroxyapatite- and β-tricalcium phosphate-based composites for biomedical applications: a review. Biomed Mat Devices. 2023;1(1):49–65. https://doi.org/10.1007/s44174-022-00037-w.
107. Abodunrin, O.D., El Mabrouk, K., Bricha, M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mat Chem B. 2023;11(5):955–973. https://doi.org/10.1039/D2TB02505A.
108. Chand, P., Malik, M., Prasad, T. Bioactive glass for applications in implants: a review. Chem Select. 2024;9(29):e202304337. https://doi.org/10.1002/slct.202304337.
109. Huang, C., Yu, M., Li, H., et al. Research progress of bioactive glass and its application in orthopedics. Adv Mat Interfaces. 2021;8(22):2100606. https://doi.org/10.1002/admi.202100606.
110. Al-Harbi, N., Mohammed, H., Al-Hadeethi, Y., et al. Silica-based bioactive glasses and their applications in hard tissue regeneration: a review. Pharmaceuticals. 2021;14(2):75. https://doi.org/10.3390/ph14020075.
111. Zhang, X., Zeng, D., Li, N., et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6:19361. https://doi.org/10.1038/srep19361.
112. de Lima Barbosa, R., Stellet Lourenço, E., de Azevedo dos Santos, J.V., et al. The effects of platelet-rich fibrin in the behavior of mineralizing cells related to bone tissue regeneration—a scoping review of in vitro evidence. J Funct Biomat. 2023;14(10):503. https://doi.org/10.3390/jfb14100503.
113. Blanco, J., García, A., Hermida‐Nogueira, L., et al. How to explain the beneficial effects of leukocyte‐and platelet‐rich fibrin. Periodontol 2000. 2025;97(1):74–94. https://doi.org/10.1111/prd.12570.
114. Farshidfar, N., Apaza Alccayhuaman, K.A., Estrin, N.E., et al. Advantages of horizontal centrifugation of platelet‐rich fibrin in regenerative medicine and dentistry. Periodontol 2000. 2025. https://doi.org/10.1111/prd.12625. Epub ahead of print. PMID: 40130760.
115. Tarallo, F., Mancini, L., Pitzurra, L., et al. Use of platelet-rich fibrin in the treatment of grade 2 furcation defects: systematic review and meta-analysis. J Clin Med. 2020;9(7):2104. https://doi.org/10.3390/jcm9072104.
116. Hwan Jung, M., Hun Lee, J., Wadhwa, P., et al. Bone regeneration in peri-implant defect using autogenous tooth biomaterial enriched with platelet-rich fibrin in animal model. App Sci. 2020;10(6):1939. https://doi.org/10.3390/app10061939.
117. On, S.W., Park, S.Y., Yi, S.M., et al. Current status of recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillofacial surgery: should it be continued? Bioengineering. 2023;10(9):1005. https://doi.org/10.3390/bioengineering10091005.
118. Aghaloo, T., Valentini, P., Yardley, R., et al. Application of biologics in maxillary sinus augmentation surgery: a narrative review. Clin Implant Dent Related Res. 2025;27(3):e70004. https://doi.org/10.1111/cid.70004.
119. Soares, C.S., Babo, P.S., Faria, S., et al. Standardized platelet-rich fibrin (PRF) from canine and feline origin: an analysis on its secretome pattern and architectural structure. Cytokine. 2021;148:155695. https://doi.org/10.1016/j.cyto.2021.155695.
120. Nemcakova, I., Litvinec, A., Mandys, V., et al. Coating Ti-6Al-4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep. 2022;12(1):5264. https://doi.org/10.1038/s41598-022-09183-z.
121. Afrashtehfar, K.I., Abuzayeda, M.A., Murray, C.A. Artificial intelligence in reconstructive implant dentistry—current perspectives. Prosthesis. 2024;6(4):767–769. https://doi.org/10.3390/prosthesis6040054.
122. Memon, A.R., Li, J., Egger, J., et al. A review on patient-specific facial and cranial implant design using artificial intelligence (AI) techniques. Expert Rev Med Devices. 2021;18(10):985–994. https://doi.org/10.1080/17434440.2021.1969914.
123. Hu, C., Li, F., Wang, S., et al. The role of artificial intelligence in enhancing personalized learning pathways and clinical training in dental education. Cogent Edu. 2025;12(1):2490425. https://doi.org/10.1080/2331186X.2025.2490425.
124. Pitchika, V., Büttner, M., Schwendicke, F. Artificial intelligence and personalized diagnostics in periodontology: a narrative review. Periodontol 2000. 2024;95(1):220–231. https://doi.org/10.1111/prd.12586.
125. Kumar, N.V., Chakradhar, D., Abhilash, P.M. Advancing bioimplant manufacturing through artificial intelligence. In: Bioimplants manufacturing. 1st ed.; M, P.A., Gajrani, K.K., eds. CRC Press: Boca Raton, USA; 2024; pp. 284–312. https://doi.org/10.1201/9781003509943-13.
126. Najeeb, M., and Islam, S. Artificial intelligence (AI) in restorative dentistry: current trends and future prospects. BMC Oral Health. 2025;25(1):592. https://doi.org/10.1186/s12903-025-05989-1.
127. Elgarba, B.M., Fontenele, R.C., Tarce, M., et al. Artificial intelligence serving pre-surgical digital implant planning: a scoping review. J Dent. 2024;143:104862. https://doi.org/10.1016/j.jdent.2024.104862.
128. Yan, B., Zhang, W., Cai, L., et al. Optics-guided robotic system for dental implant surgery. Chin J Mech Eng. 2022;35(1):55.
https://doi.org/10.1186/s10033-022-00732-1.
129. Huang, Y.C., Huang, Y.C., Ding, S.J. Primary stability of implant placement and loading related to dental implant materials and designs: a literature review. J Dent Sci. 2023;18(4):1467–1476. https://doi.org/10.1016/j.jds.2023.06.010.
130. Aiquel, L.L., Pitta, J., Antonoglou, G.N., et al. Does the timing of implant placement and loading influence biological outcomes of implant‐supported multiple‐unit fixed dental prosthesis—a systematic review with meta‐analyses. Clin Oral Implants Res. 2021;32(Suppl 21):5–27. https://doi.org/10.1111/clr.13860.
131. D’Amico, C., Bocchieri, S., Sambataro, S., et al. Occlusal load considerations in implant-supported fixed restorations. Prosthesis. 2020;2(4):252–265. https://doi.org/10.3390/prosthesis2040023.
132. Zhao, G., Zhou, Y., Shi, S., et al. Long-term clinical outcomes of immediate loading versus non-immediate loading in single-implant restorations: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2022;51(10):1345–1354. https://doi.org/10.1016/j.ijom.2022.03.057.
133. Francisco, H., Marques, D., Pinto, C., et al. Is the timing of implant placement and loading influencing esthetic outcomes in single‐tooth implants?—a systematic review. Clin Oral Implant Res. 2021;32(Suppl 21):28–55. https://doi.org/10.1111/clr.13811.
134. Pardo-Zamora, G., Ortiz-Ruíz, A.J., Camacho-Alonso, F., et al. Short dental implants (≤ 8.5 mm) versus standard dental implants (≥10 mm): a one-year post-loading prospective observational study. Int J Environ Res Public Health. 2021;18(11):5683. https://doi.org/10.3390/ijerph18115683.
135. Yang, Q., Guan, X., Wang, B., et al. Implant survival rate and marginal bone loss with the all-on-4 immediate-loading strategy: a clinical retrospective study with 1 to 4 years of follow-up. J Prost Dent. 2023;130(6):849–857. https://doi.org/10.1016/j.prosdent.2021.12.020.
136. Valera-Jiménez, J.F., Burgueño-Barris, G., Gómez-González, S., et al. Finite element analysis of narrow dental implants. Dent Mat. 2020;36(7):927–935. https://doi.org/10.1016/j.dental.2020.04.013.
137. Atieh, M.A., Almutairi, Z., Amir-Rad, F., et al. A retrospective analysis of biological complications of dental implants. Int J Dent. 2022;2022:1545748. https://doi.org/10.1155/2022/1545748.
138. Chochlidakis, K., Ercoli, C., Einarsdottir, E., et al. Implant survival and biologic complications of implant fixed complete dental prostheses: an up to 5-year retrospective study. J Prost Dent. 2022;128(3):375–381. https://doi.org/10.1016/j.prosdent.2020.12.011.
139. Monje, A., and Nart, J. Management and sequelae of dental implant removal. Periodontol 2000. 2022;88(1):182–200. https://doi.org/10.1111/prd.12418.
140. Thoma, D.S., Gil, A., Hämmerle, C.H., et al. Management and prevention of soft tissue complications in implant dentistry. Periodontol 2000. 2022;88(1):116–129. https://doi.org/10.1111/prd.12415.
141. Kotsakis, G.A., and Romanos, G.E. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000. 2022;88(1):52–63. https://doi.org/10.1111/prd.12410.
142. Adler, L., Buhlin, K., Jansson, L. Survival and complications: a 9‐to 15‐year retrospective follow‐up of dental implant therapy. J Oral Rehab. 2020;47(1):67–77. https://doi.org/10.1111/joor.12866.
143. Tsigarida, A., Chochlidakis, K., Fraser, D., et al. Peri-implant diseases and biologic complications at implant-supported fixed dental prostheses in partially edentulous patients. J Prosthodont. 2020;29(5):429–435. https://doi.org/10.1111/jopr.13165.
144. Silva, R.C., Agrelli, A., Andrade, A.N., et al. Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials. 2022;15(9):3150. https://doi.org/10.3390/ma15093150.
145. Wychowański, P., Starzyńska, A., Adamska, P., et al. Methods of topical administration of drugs and biological active substances for dental implants—a narrative review. Antibiotics. 2021;10(8):919. https://doi.org/10.3390/antibiotics10080919.
146. Karlsson, K., Derks, J., Wennström, J.L., et al. Occurrence and clustering of complications in implant dentistry. Clin Oral Implants Res. 2020;31(10):1002–1009. https://doi.org/10.1111/clr.13647.
147. Roccuzzo, A., Imber, J.C., Marruganti, C., et al. Clinical outcomes of dental implants in patients with and without history of periodontitis: a 20-year prospective study. J Clin Periodontol. 2022;49(12):1346–1356. https://doi.org/10.1111/jcpe.13716.
148. D’Ambrosio, F., Amato, A., Chiacchio, A., et al. Do systemic diseases and medications influence dental implant osseointegration and dental implant health? An umbrella review. Dent J. 2023;11(6):146. https://doi.org/10.3390/dj11060146.
149. Urban, I., Sanz‐Sánchez, I., Monje, A., et al. Complications and treatment errors in peri‐implant hard tissue management. Periodontol 2000. 2023;92(1):278–298. https://doi.org/10.1111/prd.12472.
150. Cortes-Breton Brinkmann, J., García-Gil, I., Pedregal, P., et al. Long-term clinical behavior and complications of intentionally tilted dental implants compared with straight implants supporting fixed restorations: a systematic review and meta-analysis. Biology. 2021;10(6):509. https://doi.org/10.3390/biology10060509.
151. Lampkin, A., Bensoussan, J., Curtis, D., et al. Effect of self-reported clinician experience level on perceptions of the relative rankings of risk factors for biological complications with dental implant therapy. J Prosth Dent. 2025;133(1):209–214. https://doi.org/10.1016/j.prosdent.2023.03.019.
152. Schwarz, F., and Ramanauskaite, A. It is all about peri‐implant tissue health. Periodontol 2000. 2022;88(1):9–12. https://doi.org/10.1111/prd.12407.
153. Dioguardi, M., Spirito, F., Quarta, C., et al. Guided dental implant surgery: systematic review. J Clin Med. 2023;12(4):1490. https://doi.org/10.3390/jcm12041490.
154. Schierz, O., and Reissmann, D.R. Dental patient-reported outcomes—the promise of dental implants. J Evid Dent Pract. 2021;21(1):101541. https://doi.org/10.1016/j.jebdp.2021.101541.
155. Wang, I.C., Barootchi, S., Tavelli, L., et al. The peri‐implant phenotype and implant esthetic complications. Contemporary overview. J Esthet Restor Dent. 2021;33(1):212–223. https://doi.org/10.1111/jerd.12709.
156. Cervino, G., Meto, A., Fiorillo, L., et al. Surface treatment of the dental implant with hyaluronic acid: an overview of recent data. Int J Environ Res Public Health. 2021;18(9):4670. https://doi.org/10.3390/ijerph18094670.
157. Comino-Garayoa, R., Cortés-Bretón Brinkmann, J., Peláez, J., et al. Allergies to titanium dental implants: what do we really know about them? A scoping review. Biology. 2020;9(11):404. https://doi.org/10.3390/biology9110404.
158. Cortellini, P., Stalpers, G., Mollo, A., et al. Periodontal regeneration versus extraction and dental implant or prosthetic replacement of teeth severely compromised by attachment loss to the apex: a randomized controlled clinical trial reporting 10-year outcomes, survival analysis and mean cumulative cost of recurrence. J Clin Periodontol. 2020;47(6):768–776. https://doi.org/10.1111/jcpe.13289.
159. Barrak, F.N., Li, S., Muntane, A.M., et al. Particle release from implantoplasty of dental implants and impact on cells. Int J Implant Dent. 2020;6(1):50. https://doi.org/10.1186/s40729-020-00247-1.
160. Agliardi, E.L., Panigatti, S., Romeo, D., et al. Clinical outcomes and biological and mechanical complications of immediate fixed prostheses supported by zygomatic implants: a retrospective analysis from a prospective clinical study with up to 11 years of follow‐up. Clin Implant Dent Related Res. 2021;23(4):612–624. https://doi.org/10.1111/cid.13017.
161. Omori, Y., Lang, N.P., Botticelli, D., et al. Biological and mechanical complications of angulated abutments connected to fixed dental prostheses: a systematic review with meta‐analysis. J Oral Rehab. 2020;47(1):101–111. https://doi.org/10.1111/joor.12877.
