A Critical Review of 3D Printing in Bioimplants’ Applications

Main Article Content

Vikas Sharma
Jashanpreet Singh
Amanpreet Singh

Keywords

Additive manufacturing, 3D printing, Orthopaedics, Customized implants, Regenerative medicine, Personalized medicine

Abstract

3D printing is rapidly revolutionizing the field of biomedical engineering, particularly in the production of customized implants. This manuscript explores the diverse applications of AM for the fabrication of implants in various medical disciplines such as orthopaedics, dentistry, and craniofacial surgery. Selective laser melting (SLM), fused deposition modelling (FDM), and stereolithography (SLA) are examined as the main additive fabrication techniques in terms of bioimplant manufacturing. It also includes a variety of biomaterials applied in 3D printing with emphasis on their mechanical capabilities, compatibility, and applicability in various procedures. With the help of digital design files and advanced printing techniques, healthcare providers can supply implants with respect to a patient’s exact anatomy, resulting in better fit, high performance, and more comfort than conventional mass-produced options.


The paper also highlights the advantages of AM, such as reduced surgical period and enhanced patient outcomes because of the precise customization of implant geometries. The use of 3D printing in practice has disadvantages and major obstacles, such as production limitations, cost of production, strict regulations, and long-term clinical evidence. This review discusses the future possibilities and potential of 3D printing to enhance personalized medicine and the need for interdisciplinary cooperation to address existing barriers.

Downloads

Download data is not yet available.

Abstract 258 | PDF Downloads 28

References

1. Jiménez, M., Romero, L., Domínguez, I.A., et al. Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity. 2019;2019(1):9656938. https://doi.org/10.1155/2019/9656938.
2. Alqutaibi, A.Y., Alghauli, M.A., Aljohani, MHA., et al. Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. Bioprinting. 2024;42:e00356. https://doi.org/10.1016/j.bprint.2024.e00356.
3. Kumar, S.A. and Tushar, J. Review of 3D printing applications in biomedical engineering: A comprehensive analysis. J Clin Biomed Sci. 2024;14(4):129–137. http://dx.doi.org/10.58739/jcbs/v14i4.110.
4. Li, J., Liang, D., Chen, X., et al. Applications of 3D printing in tumor treatment. Biomed Technol. 2024;5:1–13. http://dx.doi.org/10.1016/j.bmt.2023.03.002.
5. Gupta, R.S., Lal, B., Bhagat, A.C., et al. Medical imaging for patient-specific implants. In: Biomedical Implants, Dwivedi, R.K., Chauhan, P.S., eds. CRC Press: Boca Raton, FL; 2024. pp. 39–60. https://doi.org/10.1201/9781003375098-4.
6. Doganay, M.T., John, C.C., Tozluyurt, A., et al. 3D printed materials for combating antimicrobial resistance. Mater Today. 2023;67:371–398. http://dx.doi.org/10.1016/j.mattod.2023.05.030.
7. Derakhshanfar, S., Mbeleck, R., Xu, K., et al. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Mat. 2018;3:144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008.
8. Huang, G., Zhao, Y., Chen, D., et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12(6):1425–1448. http://dx.doi.org/10.1039/d3bm01934a.
9. Song, Y., Ghafari, Y., Asefnejad, A., et al. An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications. Opt Laser Technol. 2024;171:110459. http://dx.doi.org/10.1016/j.optlastec.2023.110459.
10. John, P., Antony, I.R., Whenish, R., et al. A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications. Proc Inst Mech Eng Part H J Eng Med. 2022;236(11):1583–1594. http://dx.doi.org/10.1177/09544119221122856.
11. Bhatti, S.S., and Singh, J. 3D printing of biomaterials for biomedical applications: A review. Int J Interact Des Manuf. 2023; http://dx.doi.org/10.1007/s12008-023-01525-z.
12. Kennedy, S.M., Vasanthanathan, A., Jeen, R.R., et al. Impact of mechanical engineering innovations in biomedical advancements. Vitr Model. 2024;3(1):5–18. http://dx.doi.org/10.1007/s44164-024-00065-4.
13. Javaid, M., Haleem, A., Singh, R., et al. Role of additive manufacturing applications towards environmental sustainability. Adv Ind Eng Polym Res. 2021;4(4):312–322. https://doi.org/10.1016/j.aiepr.2021.07.005.
14. Jadhav, T., Kamble, N., Padave, P. A review on additive manufacturing for bio-implants. Int J Eng Res Technol. 2019;8(11):609–614.
15. Olakanmi, E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. J Mater Process Technol. 2013;213(8):1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009.
16. Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002.
17. Way, A.C. SLS reliability considering autogenous self-sealing in tension governed reinforced concrete water retaining structures. PhD Thesis, Stellenbosch University, Stellenbosch, South Africa, 2021.
18. Ravi, P., and Patel, P. Stereolithography (SLA) in pharmaceuticals. In: Additive Manufacturing in Pharmaceuticals. Banerjee, S. Springer: Cham, Switzerland; 2023; pp. 97–123. https://doi.org/10.1007/978-981-99-2404-2_3.
19. Chen, Y.W., Moussi, J., Drury, J.L., et al. Zirconia in biomedical applications. Expert Rev Med Devices. 2016;13(10):945–963. https://doi.org/10.1080/17434440.2016.1230017.
20. Mzali, S., Elwasli, F., Mezlini, S., et al. Experimental investigation of tribological behavior of FDM-PLA surfaces. Proc Inst Mech Eng Part L J Mater Des Appl. 2025;239(4):760–775. https://doi.org/10.1177/14644207241312974.
21. Bhandari, S., Lopez-Anido, R.A., Gardner, D.J. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf. 2019;30:100922. https://doi.org/10.1016/j.addma.2019.100922.
22. Wendels, S., and Avérous, L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021;6(4):1083–1086. https://doi.org/10.1016/j.bioactmat.2020.10.002.
23. Mousa, H.M., Abdal-Hay, A., Bartnikowski, M., et al. A multifunctional zinc oxide/poly(lactic acid) nanocomposite layer coated on magnesium alloys for controlled degradation and antibacterial function. ACS Biomater Sci Eng. 2018;4(6):2169–2180. https://doi.org/10.1021/acsbiomaterials.8b00277.
24. Song, J., Winkeljann, B., Lieleg, O. Biopolymer-based coatings: promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Adv Mater Interfaces. 2020;7: 2000850. https://doi.org/10.1002/admi.202000850.
25. Zub, K., Hoeppener, S., Schubert, U.S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022;34(31):2105015. https://doi.org/10.1002/adma.202105015.
26. Shi, Y., and Wang, W. 3D inkjet printing of the zirconia ceramic implanted teeth. Mater Lett. 2020;261:127131. https://doi.org/10.1016/j.matlet.2019.127131.
27. Swetha, S., Sahiti, T.J., Priya, G.S., et al. Review on digital light processing (DLP) and effect of printing parameters on quality of print. Interactions. 2024;245(1):178. https://doi.org/10.1007/s10751-024-02018-5.
28. Mohammed, M.K., Alahmari, A., Alkhalefah, H., et al. Evaluation of zirconia ceramics fabricated through DLP 3d printing process for dental applications. Heliyon. 2024;10(17):e36725. https://doi.org/10.1016/j.heliyon.2024.e36725.
29. Murchio, S. Hierarchical multifunctional cellular materials for implants with improved fatigue resistance and osteointegration. PhD Thesis, University of Trento, Trento, Italy, 2023. https://iris.unitn.it/handle/11572/379289.
30. Mostafaei, A., Elliott, A.M., Barnes, J.E., et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. https://doi.org/10.1016/j.pmatsci.2020.100707.
31. Banothu, D., Kumar, P., Reddy, R. Advancements in 3D printing for metal bio-implants: a comprehensive bibliometric and scientometric analysis. J. Mechanic. Continua Math. Sci. 2024;19:9–28. https://doi.org/10.26782/jmcms.2024.11.00002.
32. Singh, A.B. Transforming healthcare: a review of additive manufacturing applications in the healthcare sector. Eng Proc. 2024;72(1):2. https://doi.org/10.3390/engproc2024072002.
33. Placone, J.K., Engler, A.J. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater. 2018;7(8):1701161. https://doi.org/10.1002/adhm.201701161.
34. Yuan, X., Zhu, W., Yang, Z., et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):2403641. https://doi.org/10.1002/adma.202403641.
35. Svetlizky, D., Das, M., Zheng, B., et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. https://doi.org/10.1016/j.mattod.2021.03.020.
36. Ahmad, M., Javaid, M., Haleem, A. Enhancing biocompatible metal alloy fabrication for bio implants through laser-based additive manufacturing (LBAM). Biomed Anal. 2024;1(1):73–85. https://doi.org/10.1016/j.bioana.2024.02.001.
37. Kundu, M., Kadambi, P., Dhatrak, P. Additive manufacturing of bio-implants using functionally graded materials. In: AIP Conference Proceedings. International Conference on Recent Innovations in Science and Technology (RIST 2021) 19–20 June 2021, Malappuram, India, 2021, Paul, V., Deepanraj, B, eds., AIP Publishing: Melville, New York; 2022. https://doi.org/10.1063/5.0082039.
38. Tilton, M., Lewis, G.S., Manogharan, G.P. Additive manufacturing of orthopedic implants. In: Orthopedic Biomaterials: Progress in Biology, Manufacturing, and Industry Perspectives. Li, B.Y. Webster, T. Springer: Cham, Switzerland 2018; pp. 21–55. https://doi.org/10.1007/978-3-319-89542-0_2.
39. Rakić, B., Ratković, A., Mrvić, J. Potential impact of 3D printing in redesigning supply chain–example of medical industry. In International Symposium (symorg 2016) Reshaping The Future Through Sustainable Business Development And Entrepreneurship, Zlatibor, Serbia, June 10–13, 2016; University of Belgrade, Faculty of Organizational Sciences: Belgrade, Serbia, 2016.
40. Sharma, V., Singh, J.P., Hussan, K., et al. Machine learning approach for predicting the machining characteristics of additive manufactured ABS material. Proc Inst Mech Eng C J Mech Eng Sci. 2024; 239(1):129–144. https://doi.org/10.1177/09544062241283330.
41. Jiang, L. Application and innovation of 3D printing in medical equipment maintenance. Glob Clin Eng J. 2024;6(4):15–23. https://doi.org/10.31354/globalce.v6i4.181.
42. Ballor, J., Li, T., Prima, F., et al. A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties. Int Mater Rev. 2023;68(1):26–45. https://doi.org/10.1080/09506608.2022.2036401.
43. Velásquez-García, L.F., Kornbluth, Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23(1):307–338. https://doi.org/10.1146/annurev-bioeng-082020-032402.
44. Khulief, Z. Tribological, Electrochemical, and Tribocorrosion Behaviour of New Titanium Biomedical Alloys. PhD thesis, University of Sheffield: Sheffield, UK, 2018.
45. Li, G., Liu, S., Xu, Z., et al. Recent advancements in liquid metal enabled flexible and wearable biosensors. Soft Sci. 2023;3(4):37. https://doi.org/10.20517/ss.2023.30.
46. Yang, X., Yu, Y., Lai, Q., et al. Recent development and advances on fabrication and biomedical applications of GA-based liquid metal micro/nanoparticles. Compos B Eng. 2023;248:110384. https://doi.org/10.1016/j.compositesb.2022.110384.
47. Gupta, C.P. Role of iron (Fe) in body. IOSR J Appl Chem. 2014;7(11):38–46. https://doi.org/10.9790/5736-071123846.
48. Gąsior, G., Szczepański, J., Radtke, A. Biodegradable iron-based materials—what was done and what more can be done? Materials (Basel). 2021;14(12):3381. https://doi.org/10.3390/ma14123381.
49. Pasternak, K., Kocot, J., Horecka, A.. Biochemistry of magnesium. J Elem. 2010;15(3):601–616. https://doi.org/10.5601/jelem.2010.15.3.601-616.
50. Grimwade, M. The metallurgy of gold. Interdiscip Sci Rev. 1992;17(4):371–381. https://doi.org/10.1179/isr.1992.17.4.371.
51. Bandyopadhyay, A., Traxel, K.D., Avila, J.D., et al. In: Biomaterials Science. Wagner, W.R., Shelly, E., eds. Elsevier: Amsterdam, the Netherlands; 2020; pp. 257–269. https://doi.org/10.1016/B978-0-12-816137-1.00020-9.
52. Milošev, I. CoCrMo alloy for biomedical applications. In: Biomedical Applications. Djokić, S.S. Springer: Cham, Switzerland; 2012; pp. 1–72. https://doi.org/10.1007/978-1-4614-3125-1_1.
53. Sahasrabudhe, H., Bose, S., Bandyopadhyay, A. Laser-processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation. Acta Biomater. 2018;66:118–128. https://doi.org/10.1016/j.actbio.2017.11.022.
54. de Albuquerque, T.L., Júnior, J.E.M., de Queiroz, L.P., et al. Polylactic acid production from biotechnological routes: a review. Int J Biol Macromol. 2021;186:933–951. https://doi.org/10.1016/j.ijbiomac.2021.07.074.
55. Liu, S., Qin, S., He, M., et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos B Eng. 2020;199:108238. https://doi.org/10.1016/j.compositesb.2020.108238.
56. Chen, Z., Du, C., Liu, S., et al. Progress in biomaterials inspired by the extracellular matrix. Giant. 2024;19:100323. https://doi.org/10.1016/j.giant.2024.100323.
57. Liu, H., and Webster, T.J. Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures. Mater Sci Eng C. 2011;31(2):77–89. https://doi.org/10.1016/j.msec.2010.07.013.
58. Ben-Nissan, B., Choi, A.H., Cordingley, R. Alumina ceramics. In: Bioceramics and their Clinical Applications. Elsevier: Amsterdam, the Netherlands; 2008. pp. 223–242. https://doi.org/10.1533/9781845694227.2.223.
59. Lin, L., Fang, Y., Liao, Y., et al. 3D printing and digital processing techniques in dentistry: a review of literature. Adv Eng Mater. 2019;21(6):1801013. https://doi.org/10.1002/adem.201801013.
60. Sionkowska, A. Collagen blended with natural polymers: recent advances and trends. Prog Polym Sci. 2021;122:101452. https://doi.org/10.1016/j.progpolymsci.2021.101452.
61. Sharma, S., Sudhakara, P., Singh, J., et al. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers (Basel). 2021;13(16):2623. https://doi.org/10.3390/polym13162623.
62. Buj-Corral, I., Tejo-Otero, A., Fenollosa-Artés, F. Use of FDM technology in healthcare applications: recent advances. In: Fused Deposition Modeling Based 3D Printing. Dave, H.K. Davim, J.P. Springer Cham: Switzerland, 2021;277–297. https://doi.org/10.1007/978-3-030-68024-4_15.
63. Li, J., Chen, M., Fan, X., et al. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:1–15. https://doi.org/10.1186/s12967-016-1028-0.
64. Mulcahy, N.J. Exploring the Feasibility of 3D Printing in the Treatment of Diabetic Foot Ulcers. University of Limerick: Limerick, Ireland; 2024.
65. Beshchasna, N., Saqib, M., Kraskiewicz, H., et al. Recent advances in manufacturing innovative stents. Pharmaceutics. 2020;12(4):349. https://doi.org/10.3390/pharmaceutics12040349.
66. Leberfinger, A.N., Dinda, S., Wu, Y., et al. Bioprinting functional tissues. Acta Biomater. 2019;95:32–49. https://doi.org/10.1016/j.actbio.2019.01.009.
67. Wu, Y., Liu, J., Kang, L., et al. An overview of 3D printed metal implants in orthopedic applications: present and future perspectives. Heliyon. 2023;9(7): e17718. https://doi.org/10.1016/j.heliyon.2023.e17718.
68. García-Ávila, J., González-Gallegos, C.P., Segura-Ibarra, V., et al. Dynamic topology optimization of 3D-printed transtibial orthopedic implant using tunable isotropic porous metamaterials. J Mech Behav Biomed Mater. 2024;153:106479. https://doi.org/10.1016/j.jmbbm.2024.106479.
69. Wong, K.C. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57–66. https://doi.org/10.2147/ORR.S99614.
70. Liu, B., Ma, Z., Li, J., et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater. 2022;10:269–280. https://doi.org/10.1016/j.bioactmat.2021.09.009.
71. Oraa, J., Fiz, N., González, S., et al. Derotation tibial osteotomy with custom cutting guides and custom osteosynthesis plate printed with 3D technology: case and technical note. Ann 3D Print Med. 2023;9:100093. https://doi.org/10.1016/j.stlm.2022.100093.
72. Miao, K., Wang, J., Yu, K., et al. Percutaneous reduction and cannulated screw fixation assisted by 3D printing technology of calcaneal fractures in children. J Orthop Sci. 2022;29(1):236-242.
73. Kumar, S.V., Marimuthu, K., Subramani, S., et al. Prospective randomized trial comparing open reduction and internal fixation with minimally invasive reduction and percutaneous fixation in managing displaced intra-articular calcaneal fractures. Int Orthop. 2014;38:2505–2512. https://doi.org/10.1007/s00264-014-2501-0.
74. Kia, C., Antonacci, C.L., Wellington, I., et al. Spinal implant osseointegration and the role of 3D printing: an analysis and review of the literature. Bioengineering. 2022;9(3):108. https://doi.org/10.3390/bioengineering9030108.
75. Siracusa, V., Maimone, G., Antonelli, V. State-of-art of standard and innovative materials used in cranioplasty. Polymers (Basel). 2021;13(9):1452. https://doi.org/10.3390/polym13091452.
76. Zheng, H., Wang, L., Jiang, W., et al. Application of 3D printed patient-specific instruments in the treatment of large tibial bone defects by the Ilizarov technique of distraction osteogenesis. Front Surg. 2023;9:985110. https://doi.org/10.3389/fsurg.2022.985110.
77. Choudhari, A., Gupta, A.K., Kumar, A., et al. Wear and friction mechanism study in knee and hip rehabilitation: a comprehensive review. In: Applications of Biotribology in Biomedical Systems. Kumar, A., Kumar, A., eds. Springer Cham: Switzerland, 2024;345–432. https://doi.org/10.1007/978-3-031-58327-8_13.
78. Wang, J., Wang, X., Sun, B., et al. 3D-printed patient-specific instrumentation decreases the variability of patellar height in total knee arthroplasty. Front Surg. 2023;9:954517. https://doi.org/10.3389/fsurg.2022.954517.
79. Meng, M., Wang, J., Huang, H., et al. 3D printing metal implants in orthopedic surgery: methods, applications and future prospects. J Orthop Transl. 2023;42:94–112. https://doi.org/10.1016/j.jot.2023.08.004.
80. Saroia, J., Wang, Y., Wei, Q., et al. A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol. 2020;106:1695–1721. https://doi.org/10.1007/s00170-019-04534-z.
81. Gentile, C., and Gruppioni, E. A perspective on prosthetic hands control: from the brain to the hand. Prosthesis. 2023;5(4):1184–1205. https://doi.org/10.3390/prosthesis5040083.
82. Hao, Y., Wang, L., Jiang, W., et al. 3D printing hip prostheses offer accurate reconstruction, stable fixation, and functional recovery for revision total hip arthroplasty with complex acetabular bone defect. Engineering. 2020;6(11):1285–1290. https://doi.org/10.1016/j.eng.2020.04.013.
83. Dziaduszewska, M., and Zieliński, A. Structural and material determinants influencing the behavior of porous Ti and its alloys made by additive manufacturing techniques for biomedical applications. Materials (Basel). 2021;14(4):712. https://doi.org/10.3390/ma14040712.
84. Borah, J., and Chandrasekaran, M. Experimental investigation and development of artificial neural network modeling of 3D printed PEEK bio implants and its optimization. Research Square (preprint) 2023; posted 14 Sep, 2023. https://doi.org/10.21203/rs.3.rs-3204960/v1.
85. Li, X., Heidari, A., Nourbakhsh, S.M., et al. Design and fabrication of elastic two-component polymer-metal disks using a 3D printer under different loads for the lumbar spine. Polym Test. 2022;112:107633. https://doi.org/10.1016/j.polymertesting.2022.107633.
86. Lewallen, E.A., Riester, S.M., Bonin, C.A., et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng B Rev. 2015;21(2):218–230. https://doi.org/10.1089/ten.teb.2014.0333.
87. Bandyopadhyay, A., Mitra, I., Goodman, S.B., et al. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. https://doi.org/10.1016/j.pmatsci.2022.101053.
88. Schito, M., Peter, T.F., Cavanaugh, S., et al. Opportunities and challenges for cost-efficient implementation of new point-of-care diagnostics for HIV and tuberculosis. J Infect Dis. 2012;205(Suppl 2):S169–S180. https://doi.org/10.1093/infdis/jis044.
89. Wu, S., Liu, X., Yeung, K.W.K., et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36. https://doi.org/10.1016/j.mser.2014.04.001.
90. Bernard, H., and Foss, M. Patient experiences of enhanced recovery after surgery (ERAS). Br J Nurs. 2014;23(2):100–106. https://doi.org/10.12968/bjon.2014.23.2.100.
91. Sidhu, S.S., Chanda, A., Abdel-Hady, G.M. Advances and perspective in bio-implants for commercialization. Front. Bioeng. and Biotech. 2023;11:1306077. https://doi.org/10.3389/fbioe.2023.1306077.
92. Mahajan, A., Devgan, S., Zitoune, R. Additive Manufacturing of Bio-Implants. Springer: Cham, Switzerland; 2024. https://doi.org/10.1007/978-981-99-6972-2.
93. Jegadeesan, J.T., Baldia, M., Basu, B. Next-generation personalized cranioplasty treatment. Acta Biomater. 2022;154:63–82. https://doi.org/10.1016/j.actbio.2022.10.030.
94. Pathak, K., Saikia, R., Das, A., et al. 3D printing in biomedicine: advancing personalized care through additive manufacturing. Explor Med. 2023;4(6):1135–1167. https://doi.org/10.37349/emed.2023.00200.
95. Mishchenko, O., Kopchak, A., Chernohorskyi, D., et al. Craniofacial reconstruction using 3D personalized implants with enhanced surface properties: technological and clinical aspects. Appl Surf Sci Adv. 2023;16:100437. https://doi.org/10.1016/j.apsadv.2023.100437.
96. Yousefiasl, S., Sharifi, E., Salahinejad, E., et al. Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering. Eng Regen. 2023;4(1):1–11. https://doi.org/10.1016/j.engreg.2022.09.005.
97. Ullah, M., Bibi, A., Wahab, A., et al. Shaping the future of cardiovascular disease by 3D printing applications in stent technology and its clinical outcomes. Curr Probl Cardiol. 2024;49(1):102039. https://doi.org/10.1016/j.cpcardiol.2023.102039.
98. Liu, J., Mohd Rafiq, N.B., Wong, L.M., et al. Surface treatment and bioinspired coating for 3D-printed implants. Front Chem. 2021;9:768007. https://doi.org/10.3389/fchem.2021.768007.
99. Yuan, T., Liu, D., Li, Q., et al. 3D printing of melatonin-loaded esophageal stents for treatment of corrosive esophagitis. Appl Mater Today. 2024;37:102161. https://doi.org/10.1016/j.apmt.2024.102161.
100. Jabeen, F. Bio implants—a review. J Adv Med Dent Sci Res. 2018;6(1):169. https://doi.org/10.21276/jamdsr.
101. Kessler, A., Reichl, F.X., Folwaczny, M., et al. Monomer release from surgical guide resins manufactured with different 3D printing devices. Dent Mater. 2020;36(11):1486–1492. https://doi.org/10.1016/j.dental.2020.09.002.
102. Li, H., An, J., Bao, Q., et al. Photocurable 3D printing high-strength gels for flexible wearable devices and surgical models. Polymer (Guildf). 2023;286:126392. https://doi.org/10.1016/j.polymer.2023.126392.
103. Sharma, S., Jain, A., Gupta, V., et al. Additive manufacturing of bio-implants. In: Additive Manufacturing for Biomedical Applications: Recent Trends and Challenges. Dixit, A. Kumar, A., eds. Springer; Cham, Switzerland; 2024; pp. 39–54. https://doi.org/10.1007/978-981-97-5456-4_3.
104. Chua, C.K., Wong, C.H., Yeong, W.Y. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing. Academic Press: Cambridge, MA; 2017. https://doi.org/10.1016/B978-0-12-813489-4.00008-8.
105. Limaye, N., Veschini, L., Coward, T. Assessing biocompatibility & mechanical testing of 3D-printed PEEK versus milled PEEK. Heliyon. 2022;8(12):e12314. https://doi.org/10.1016/j.heliyon.2022.e12314.
106. Abd-Elaziem, W., Darwish, M.A., Hamada, A., et al. Titanium-based alloys and composites for orthopedic implants applications: a comprehensive review. Mater Des. 2024;241:112850. https://doi.org/10.1016/j.matdes.2024.112850.
107. Martinez‐Marquez, D., Terhaer, K., Scheinemann, P., et al. Quality by design for industry translation: three‐dimensional risk assessment failure mode, effects, and criticality analysis for additively manufactured patient-specific implants. Eng Rep. 2020;2(1):e12113. https://doi.org/10.1002/eng2.12113.
108. Guzzi, E.A., and Tibbitt, M.W. Additive manufacturing of precision biomaterials. Adv Mater. 2020;32(13):1901994. https://doi.org/10.1002/adma.201901994.
109. Das, T.K., Ghosh, P., Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater. 2019;2:214–233. https://doi.org/10.1007/s42114-018-0072-z.
110. Verma, A., Kapil, A., Klobčar, D., et al. A review on multiplicity in multi-material additive manufacturing: process, capability, scale, and structure. Materials (Basel). 2023;16(15):5246. https://doi.org/10.3390/ma16155246.
111. Wu, Y., An, C., Guo, Y. 3D printed graphene and graphene/polymer composites for multifunctional applications. Materials (Basel). 2023;16(16):5681. https://doi.org/10.3390/ma16165681.
112. Vido, M., de Oliveira, N.G.C., Lourenço, S.R., et al. Computer-aided design and additive manufacturing for automotive prototypes: a review. Appl Sci. 2024;14(16):7155. https://doi.org/10.3390/app14167155.
113. Gao, W., Zhang, Y., Ramanujan, D., et al. The status, challenges, and future of additive manufacturing in engineering. Comput Des. 2015;69:65–89. https://doi.org/10.1016/j.cad.2015.04.001.
114. Top, N., Şahin, İ., Gökçe, H., et al. Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art. J Mater Res. 2021;36:3725–3745. https://doi.org/10.1557/s43578-021-00156-y.
115. Delgado, J.M.D., and Oyedele, L. Digital twins for the built environment: learning from conceptual and process models in manufacturing. Adv Eng Informatics. 2021;49:101332. https://doi.org/10.1016/j.aei.2021.101332.
116. Wang, D.D., Qian, Z., Vukicevic, M., et al. 3D printing, computational modeling, and artificial intelligence for structural heart disease. Cardiovasc Imaging. 2021;14(1):41–60. https://doi.org/10.1016/j.jcmg.2019.12.022.