Performance Comparison of AlexNet and GoogLeNet on Pneumonia Chest X-Rays
Main Article Content
Keywords
Pneumonia, Chest-X-rays, CNN, AlexNet vs GoogleNet, Performance comparison
Abstract
Detecting pneumonia on chest radiographs is crucial for precise clinical intervention. Efficient diagnostic tools are necessary to assess a large number of X-rays and improve patient outcomes. This study uses 6,796 chest X-ray images, consisting of both pneumonia and healthy conditions, to test the classification performance of two deep learning models, GoogLeNet and AlexNet. Both models demonstrated high sensitivity; however, AlexNet exhibited higher accuracy, specificity, and F-score. AlexNet also showed a higher validation accuracy at 98.08% compared to GoogLeNet’s accuracy of 97.87%. Therefore, the results indicate that AlexNet model show better accuracy than the GoogLeNet model.
Downloads
Abstract 229 | PDF Downloads 24
References
2. Asgharnezhad, H., Shamsi, A., Alizadehsani, R., et al. Objective evaluation of deep uncertainty predictions for covid-19 detection. Sci. Rep. 2022;12:815. https://doi.org/10.1038/s41598-022-05052-x.
3. Ayan, E. and Ünver, H.M. Diagnosis of pneumonia from chest X-ray images using deep learning. In proceedings of 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey. April 24–26, 2019:1–5. https://doi.org/10.1109/ebbt.2019.8741582.
4. Ballester, P. and Araújo, R.M. On the performance of GoogLeNet and AlexNet applied to sketches. In proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Arizona, USA. February 12–17, 2016;30(1): 1124–1128. https://doi.org/10.1609/aaai.v30i1.10171.
5. Chen, X., Wang, X., Zhang, K., et al. Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022;79:102444. https://doi.org/10.1016/j.media.2022.102444.
6. Cherian, T., Mulholland, E.K., Carlin, J.B., et al. Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bull. World Health Organ. 2005;83(5):353–359.
7. Yu, C.Y., Chang, M.C., Cheng, Y.C., et al. Convolutional Neural Network for Early Pulmonary Embolism Detection via Computed Tomography. arXiv preprint arXiv:2204.03204. 2022;1–7.
8. Chouhan, V.S., Singh, S.K., Khamparia, A., et al. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 2020;10(2):559. https://doi.org/10.3390/app10020559.
9. Çınar, A., Yıldırım. M., Eroğlu. Y. Classification of pneumonia cell images using improved ResNet50 model. Traitement Du Signal. 2021;38(1):165–173. https://doi.org/10.18280/ts.380117.
10. Çınar, A. and Tuncer, S.A. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Applied Sciences. 2021;3:503. https://doi.org/10.1007/s42452-021-04485-9.
11. Das, D. and Howlett, D.C. Chest X-ray manifestations of pneumonia. Surgery (Oxford). 2009;27(10):453–455. https://doi.org/10.1016/j.mpsur.2009.08.006.
12. Gilani, Z., Kwong, Y.D., Levine, O.S., et al. A literature review and survey of childhood pneumonia etiology studies: 2000–2010. Clin. Infect. Dis. 2012;54(suppl_2):S102–S108. https://doi.org/10.1093/cid/cir1053.
13. Gupta, A., Anjum, Gupta, S., Katarya, R. InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl. Soft Comput. 2021;99:106859. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106859.
14. Kalaiarasi, P. and Rani, P.E. A comparative analysis of AlexNet and GoogLeNet with a simple DCNN for face recognition. AISC (Internet). 2020;655–668. https://doi.org/10.1007/978-981-15-5029-4_54.
15. Khafaga, D.S., Alhussan, A.A., El-kenawy, E.M., et al. Meta-heuristics for feature selection and classification in diagnostic breast cancer. Comput. Mater. Contin. 2022;73(1):749–765. https://doi.org/10.32604/cmc.2022.029605.
16. Khan, I.D., Khan, M.H., Farooq, O., et al. A comparative analysis of seizure detection via scalogram using GoogLeNet, AlexNet and SqueezeNet. In proceedings of Smart Technologies, Communication & Robotics (STCR), Sathyamangalam, India. November 10, 2021:1–5. https://doi.org/10.1109/stcr51658.2021.9588862.
17. Krizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 2012:60(6):84–90. https://doi.org/10.1145/306538.
18. Kundu, R., Das, R., Geem, Z.W., et al. Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PloS One. 2021;16(9):e0256630. https://doi.org/10.1371/journal.pone.0256630.
19. Lakhani, P. and Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–582. https://doi.org/10.1148/radiol.2017162326.
20. Lee, Y. and Nam, S. Performance comparisons of AlexNet and GoogLeNet in cell growth inhibition IC50 prediction. Int. J. Mol. Sci. 2021;22(14):7721. https://doi.org/10.3390/ijms22147721.
21. Liu, X., Wang, Z., Zheng, L., et al. Pneumonia recognition based on convolutional neural network feature map fusion. J. Phys. Conf. Ser. 2021;1757(1):12047. https://doi.org/10.1088/1742-6596/1757/1/012047.
22. Michalski, B. and Plechawska-Wójcik, M. Porównanie modeli LeNet-5, AlexNet i GoogLeNet w rozpoznawaniu pisma ręcznego. J. Comput. Sci. Inst. 2022;23:145–151. ttps://doi.org/10.35784/jcsi.2919.
23. Militante, S.V, Dionisio, N.V., Sibbaluca, B.G. Pneumonia detection through adaptive deep learning models of convolutional neural networks. In proceedings of 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia. August 8, 2020;88–93. https://doi.org/10.1109/ICSGRC49013.2020.9232613.
24. Nakasi, R., Aliija, E.R., Nakatumba, J. A poster on intestinal parasite detection in stool sample using AlexNet and GoogleNet Architectures. In Proceedings of 4th ACM SIGCAS Conference on Computing and Sustainable Societies, Virtual, Australia. June 28–July 2, 2021;389–395. https://doi.org/10.1145/3460112.3472309.
25. Ni, Q., Sun, Z.Y., Qi, L., et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur. Radiol. 2020;30(12):6517–6527. https://doi.org/10.1007/s00330-020-07044-9.
26. Pacal, I. Deep learning approaches for classification of breast cancer in ultrasound (US) images. J. Inst. Sci. Technol. 2022;12(4):1917–1927. https://doi.org/10.21597/jist.1183679.
27. Rajpurkar, P., Irvin, J., Zhu, K., et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXiv Preprint ArXiv:1711.05225. 2017. https://arxiv.org/pdf/1711.05225.pdf.
28. Reshan, M.S.A, Gill, K.S., Anand, V., et al. Detection of pneumonia from chest x-ray images utilizing mobileNet model. Healthcare (Basel). 2023;11(11):1561. https://doi.org/10.3390/healthcare11111561.
29. Samee, N.A., Atteia, G., Meshoul, S., et al. Deep learning cascaded feature selection framework for breast cancer classification: Hybrid CNN with univariate-based approach. Mathematics. 2022;10(19):3631. https://doi.org/10.3390/math10193631.
30. Singh, N. and Talwekar, R.H. Comparison of ALEXNET and GOOGLENET convolutional neural network models to detect obstructive sleep apnea using single-channel electrocardiogram. J. Med. Pharm. Allied. Sci. 2023;12(3):5832–5839. https://doi.org/10.55522/jmpas.V12I3.5020.
31. Swarup, C., Singh, K.U., Kumar, A., et al. Brain tumor detection using CNN, AlexNet &GoogLeNet ensembling learning approaches. Electron. Res. Arch. 2023;31(5):2900–2924. https://doi.org/10.3934/era.2023146.
32. Szegedy, C., Liu, W., Jia, Y., et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA. June 07–12, 2015;1–9. https://doi.org/10.1109/CVPR.2015.7298594.
33. Ullah, M.S., Qayoom, H., Hassan, F. Viral pneumonia detection using modified GoogleNet through lung X-rays. In proceeds of 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia. December 06–08, 2021;1–6. https://doi.org/10.1109/ISAECT53699.2021.9668553.
34. Wang, S. and Yang, G.A. Novel automated classification and segmentation for COVID-19 using 3D CT Scans. In proceeds of 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS). Genova, Italy. December 05–07, 2022;1–5. https://doi.org/10.1109/IPAS55744.2022.10052819.
35. Yang, Y., Wu, Y., Zhao, W. Comparison of lung ultrasound and chest radiography for detecting pneumonia in children: A systematic review and meta-analysis. Ital. J. Pediatr. 2024;50(1):12. https://doi.org/10.1186/s13052-024-01583-3.
36. Yi, Z. Evaluation and implementation of convolutional neural networks in image recognition. J. Phys. Conf. Ser. 2018;1087:62018. https://doi.org/10.1088/1742-6596/1087/6/062018.
37. Yu, S., Liu, L., Wang, Z., et al. Transferring deep neural networks for the differentiation of mammographic breast lesions. Sci. China Technol. Sci. 2018;62(3):441–447. https://doi.org/10.1007/s11431-017-9317-3.
38. Zhang, J., Chen, B., Zhou, M., et al. Photoacoustic image classification and segmentation of breast cancer: A feasibility study. IEEE Access. 2019;7:5457–5466. https://doi.org/10.1109/access.2018.2888910.
