Dose Verification for Linac-Based Stereotactic Radiosurgery planned at Different Prescription Isodose Levels Using Delta4 Phantom+
Main Article Content
Keywords
Stereotactic radiosurgery, prescription isodose, treatment plans, Delta4 Phantom , Gamma-index
Abstract
Background: Linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) plans and their treatment are complex techniques that require a comprehensive quality assurance program before they are clinically implemented. To cope with this intricacy, clinics must comprehensively validate treatment plans to deliver precise doses and assure patients. The study aimed to verify the treatment planning dose to the dose delivered at the LINAC during the SRS treatment planned at different prescription isodoses with the new wireless Delta4 Phantom+.
Materials and Methods: Clinically accepted volumetric modulated arc therapy (VMAT) SRS plans made with the Stereotactic End-to-End Verification (STEEV) anthropomorphic phantom were created with six different prescription isodose level using 6 MV flattening filter free (FFF) beam. All these VMAT SRS plans were replicated on the Delta4phantom+ and delivered with Varian Truebeam LINAC. The planned and delivered dose showed excellent correlation, and this was evaluated using distance to agreement (2 mm), dose deviation (2%), and gamma-index passing rate.
Results: The results showed that the calculated treatment planning system (TPS) dose and the measurement with the delta4 plus phantom were in excellent accord. The minimum gamma pass rate was 99.6% and the maximum 100%. The gamma passing rate above 95% for all plans and dose goals were achieved.
Conclusion: The verification with the Delta4 Phantom+ measurement depicted an excellent correlation with the dose of the SRS treatment plans for the different prescription isodose levels. The wireless Delta 4Phantom+ device is precise and consistent. It is a quickly set-up device, suitable for SRS treatment verification and allows for real-time measurement. However, we do recommend a stricter passing rate for VMAT SRS Plans.
Downloads
References
2. Korreman S, Medin J, Kjær-Kristoffersen F. Dosimetric verification of RapidArc treatment delivery. Acta Oncol (Madr). 2009;48(2):185-191. doi:10.1080/02841860802287116
3. Padilla L, Palta JR. Overview of Technologies for SRS and SBRT Delivery. In: Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy (SBRT). Springer Publishing Company; 2018:73-101. doi:10.1891/9780826168573.0007
4. Hellerbach A, Eichner M, Rueß D, et al. Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery. Strahlentherapie und Onkol. 2022;198(5):484-496. doi:10.1007/s00066-021-01872-4
5. Kim J in, Park SY, Kim HJ, Kim JH, Ye SJ, Park JM. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT. Radiat Oncol. 2014;9(1):1-12. doi:10.1186/1748-717X-9-167
6. James S, Al-Basheer A, Elder E, et al. Evaluation of commercial devices for patient specific QA of stereotactic radiotherapy plans. J Appl Clin Med Phys. 2023;24(8):1-11. doi:10.1002/acm2.14009
7. Solberg TD, Balter JM, Benedict SH, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary. Pract Radiat Oncol. 2012;2(1):2-9. doi:10.1016/j.prro.2011.06.014
8. Xia Y, Adamson J, Zlateva Y, Giles W. Physics investigation Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. J Radiosurgery SBRT. 2020;7:135-147.
9. Loo M, Clavier JB, Khalifa JA, Moyal E, Khalifa J. Dose‐response effect and dose‐toxicity on stereotactic radiotherapy for brain metastases: A review. Cancers (Basel). 2021;13(23):1-22. doi:10.3390/cancers13236086
10. Milano MT, Grimm J, Niemierko A, et al. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys. 2021;110(1):68-86. doi:10.1016/j.ijrobp.2020.08.013
11. Huang Z, Qiao J, Yang C, et al. Quality Assurance for Small-Field VMAT SRS and Conventional-Field IMRT Using the Exradin W1 Scintillator. Technol Cancer Res Treat. 2021;20(270):1-7. doi:10.1177/15330338211036542
12. Ahmed S, Zhang G, Moros EG, Feygelman V. Comprehensive evaluation of the high-resolution diode array for SRS dosimetry. J Appl Clin Med Phys. 2019;20(10):13-23. doi:10.1002/acm2.12696
13. Stepanek CJ, Haynes JA, Fletcher S. Evaluation of a complementary metal oxide semiconductor detector as a tool for stereotactic body radiotherapy plan quality assurance. Phys Imaging Radiat Oncol J. 2023;25(100418).
14. Koper T, Kowalik A, Adamczyk S. The semiconductor diode detector response as a function of field size and beam angle of high-energy photons. reports Pract Oncol Radiother. 2017;22:193-200. http://dx.doi.org/10.1016/j.rpor.2016.12.004
15. Della V, Ampoh A, Manson EN, et al. In Vivo Dosimetry Using a Flat Surface Sun Nuclear Corporation Diode in 60 co Beams for Some Radiotherapy Treatments in Ghana. Iran J Med Phys. 2019;16:329-335. 10.22038/ijmp.2018.29705.1324
16. Delta4 Phantom+:The Fastest and most accurate 4D verification system. Accessed February 25, 2024.
https://temed.pl/wp-content/uploads/brochure-D017-03-001-04-Delta4-PhantomPlus.pdf
17. The Delta4 Phantom+ wireless Phantom. Accessed February 26, 2024. https://images10.newegg.com/UploadFilesForNewegg/itemintelligence/NZXT/D017_2003_20001_2001_20Delta4_20Phantom_20The_20wireless_20phantom1448638537616.pdf
18. Dutta B, Goswami S, Moran S, Talukdar P. Commissioning and performance evaluation of varian truebeam linear accelerator. J Radiat Med Trop. 2023;4(1):25. doi:10.4103/jrmt.jrmt_11_22
19. Low DA. Gamma dose distribution evaluation tool. J Phys Conf Ser. 2010;250:349-359. doi:10.1088/1742-6596/250/1/012071
20. Song JH, Kim MJ, Park SH, et al. Gamma analysis dependence on specified low-dose thresholds for VMAT QA. J Appl Clin Med Phys. 2015;16(6):263-272. doi:10.1120/jacmp.v16i6.5696
21. Srivastava RP, De Wagter C. Clinical experience using Delta 4 phantom for pre-treatment patient-specific quality assurance in modern radiotherapy. J Radiother Pract. 2019;18(2):210-214. doi:10.1017/S1460396918000572
22. Sasaki M, Sugimoto W, Ikushima H. Simplification of head and neck volumetric modulated arc therapy patient-specific quality assurance, using a Delta4 PT. Reports Pract Oncol Radiother. 2020;25(5):793-800. doi:10.1016/j.rpor.2020.07.004
23. Das S, Kharade V, Pandey V, KV A, Pasricha RK, Gupta M. Gamma Index Analysis as a Patient-Specific Quality Assurance Tool for High-Precision Radiotherapy: A Clinical Perspective of Single Institute Experience. Cureus. 2022;14(Dd). doi:10.7759/cureus.30885
24. Li H, Dong L, Zhang L, Yang JN, Gillin MT, Zhu XR. Toward a better understanding of the gamma index: Investigation of parameters with a surface‐based distance methoda). Med Phys. 2011;38(12):6730-6741. doi:10.1118/1.3659707
25. Nelms BE, Zhen H, Toḿ WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys. 2011;38(2):1037-1044. doi:10.1118/1.3544657
26. Sadagopan R, Bencomo JA, Martin RL, Nilsson G, Matzen T, Balter PA. Characterization and clinical evaluation of a novel IMRT quality assurance system. J Appl Clin Med Phys. 2009;10(2):104-119. doi:10.1120/jacmp.v10i2.2928
27. Bedford JL, Lee YK, Wai P, South CP, Warrington AP. Evaluation of the Delta 4 phantom for IMRT and VMAT verification. Phys Med Biol. 2009;54(9):167-176. doi:10.1088/0031-9155/54/9/N04
28. Desai V, Bayouth J, Smilowitz J, Yadav P. A clinical validation of the MR-compatible Delta4 QA system in a 0.35 tesla MR linear accelerator. J Appl Clin Med Phys. 2021;22(4):82-91. doi:10.1002/acm2.13216
29. Woon W, Ravindran PB, Ekanayake P, Vikraman S, Lim YYF, Khalid J. A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA. J Appl Clin Med Phys. 2018;19(2):230-248. doi:10.1002/acm2.12285