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Editor’s  Corner
A Public-Private Medical Technology Model – 

India Case Study

The medical device development landscape has changed 
significantly post COVID. The pandemic has put the medi-
cal technology sector in top gear, pushing industries to 
innovate, develop, and manufacture products quickly. 
Countries like India have witnessed tremendous growth 
in the health technology sector, fueled by an exponential 
rise in government health allocation each year. One of the 
most significant efforts towards furthering medical device 
development has been the establishment of the Andhra 
Pradesh Medical Technology Zone (AMTZ).

AMTZ is India’s first and one of the world’s largest 
medical technology manufacturing cluster with over 
100 companies working on research, development, and 
production of life-saving medical devices. It is India’s 
premier medical technology park with Common Manufac-
turing Facilities & Common Scientific Facilities, including 
specialized laboratories, warehousing, and testing cent-
ers. The Center for Electromagnetic Compatibility and 
Safety Testing, Center for Biomaterial Testing, Center for 
3-D Printing, Centers for Lasers, MRI Super Conducting 
Magnets, Gamma Irradiation Centre, Mold & Machining 
Centre, among many others, have played a key role in ac-
celerating product development. This cluster of scientific 
facilities, access to raw materials, critical component 
supply chain within the zone, trained human resources, 
and ready-to-use infrastructure makes AMTZ the engine 
of growth for medical technology globally.

In the nation’s battle against the pandemic, AMTZ con-
tributed by producing over 100 ventilators, 500 oxygen 
concentrators, and 1 million RT PCR kits every day. In 
addition, many innovations from AMTZ, such as mobile 
container hospitals, mobile RTPCR vehicles, and mobile 
oxygen plants, were sent to even the most remote parts 
of the country. Built-in a record time of 342 days, AMTZ 

showcases modern India as a leader in the global medical 
technology stage.

AMTZ works to reduce the cost of manufacturing up 
to 40%, simplify the end-to-end operations, and reduce 
import dependency, which is presently around 75%. 
Furthermore, it believes in creating and operating an eco-
system that boosts innovations and supports affordable 
manufacturing scale-up, allowing technology accessible 
to every citizen globally.

The Kalam Institute of Health Technology (KIHT) at 
AMTZ has recently been designated as India’s first WHO 
collaborating Centre (WHO-CC) for innovations. The WHO-
CC will work directly with WHO headquarters to further 
health innovations and innovative technologies towards 
rapid development and global deployment.

Another essential element to success is the availability 
of a workforce that can be readily integrated into indus-
trial design, development, and manufacturing. AMTZ 
understands that as India’s medical sector experiences 
unprecedented growth, there is a strong demand for a 
dynamic, skilled, and capable workforce and a need for a 
new paradigm in training and development. Fortunately, 
the interdisciplinary nature of medical technology allows 
engineering professionals from the conventional domains 
of mechanical, electrical & electronics, instrumentation, and 
computer science, to specialize as biomedical engineers 
and fill the enormous vacuum domestically and globally. 

Currently, the demand for a master’s level program in 
India for Medical Technology far outweighs the limited 
options available. Recognizing this shortage, AMTZ is 
partnering with Skill-Lync to launch the country’s first 
“Executive PG Program in Medical Technology.” This will 
be a one-of-a-kind program that will offer students a 
flexible pedagogy, integrating online and offline learning 
through solid industry collaboration. 
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During the first 6 months, students will be offered 9 
fundamental courses in a self-paced online environment 
in the Skill-Lync platform. Then, for the next 6 months, 
students will be engaged in taking coursework related to 
a specialization of their choice while undergoing hands-
on training at the various medical device manufacturing 
facilities in AMTZ. This will provide the students with 
first-hand exposure to product design, development, and 
manufacturing while studying. 

During the final lap of the program, the students will 
take a certification exam and get skill-certified by Indian 
Biomedical Skill Council (IBSC). The IBSC is yet another 
notable initiative of AMTZ established jointly with the 
Association of Indian Medical Manufacturers of Medical 
Devices (AiMeD), under the support of the Quality Council 
of India (QCI), to provide a certification system for bio-
medical engineers in the country who serve as the back-
bone of the healthcare services. Furthermore, it aims at 
strengthening the Biomedical Skill Sector in the country 
and, with this objective, develop job roles supported by 
the National Skill Development Agency (NSDA) under the 
Ministry of Skill Development & Entrepreneurship (MSDE).

The current VUCA environment requires continuous 
adaptation and assessment of learning paradigms to ca-
ter to industry requirements. Therefore, AMTZ strongly 
feels that this new foray into online learning combined 
with practical industry exposure will help create the ideal 
workforce.

We all know too well how much loss of life, suffering, 
ending family’s livelihood and disrupted bread earnings 
routine this Pandemic caused. However, this necessitated 
forward-thinking, innovation, and capturing of unique new 
public-private collaborations that were not achievable 
previously. I focused on this India case study, but other 
initiatives hopefully are taking place around the world. I 
am looking forward to hearing from you about your local 
situation and will be happy to respond to comments and 
questions relating to our successful model.

The Author wishes to place on record, with sincere 
gratitude, the support received from Yadin David, Tom 
Judd, and a very large family of global clinical engineer-
ing leaders.

Together we are making it better!
Dr. Jitendra Sharma
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This book review is about the Elsevier Academic Press 
newly published Cybersecurity for Connected Medical 
Devices by author Arnab Ray, Ph.D.  In addition to the 
Preface, the book contains nine chapters, an Afterword, 
and an Index for a total of 332 pages. This book contains 
a bevy of information that could overwhelm on first 
reading, but helpfully, from Chapter 2 onwards, every 
chapter serves up a summary and key takeaways that 
consolidate the key messages. Arnab Ray is a computer 
scientist with a background in critical software devel-
opment and cybersecurity design of medical devices 
that provides a cybersecurity developer’s perspective 
throughout this book.

Whilst the key audience is manufacturers of medi-
cal devices who are responsible for designing a cyber 
secure product, clinical engineers with an interest in 
cybersecurity should find this book a handy supplement 
to make sense of the fast-evolving landscape. They will 
gain a broad understanding of basic cybersecurity prin-
ciples, which can help influence integration choices in a 
healthcare delivery organization (HDO). Often medical 
device manufacturers (MDM) have not given enough 
consideration to the challenges of incorporating and 
maintaining a medical device in an HDO IT network. 
Importantly, Arnab recognizes that cybersecurity is a 
shared responsibility between the manufacturers and 
healthcare providers, but does not propose an effective 
mechanism for defining and sharing such responsibility. 

The introduction provides context to support the 
assertion that the cybersecurity of medical devices is a 
growing concern. It cites some high-profile examples of 
cyber-attacks on medical devices in a controlled envi-
ronment to provide proof of concept. While there are no 
reports of cybersecurity incidents in a real-life context it 
warns, that since most devices do not log cyber-related 
issues, a cyber incident could be incorrectly diagnosed 
as equipment malfunction. It would have been useful 
to highlight tools available to HDOs such as intrusion 
detection, dynamic network segmentation, and malware 
prevention systems and to examine how they impact 
medical devices’ performance. 

With the increasing integration of connected medi-
cal devices, with varying levels of endpoint security, to 
information systems, there are more opportunities for 
cybercriminals to gain illegal access to confidential infor-
mation and disrupt wider operations within a healthcare 
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delivery organization. This chapter helpfully discusses 
the development of national cybersecurity policies in the 
U.S. with some acknowledgment of similar policies in the 
E.U. Acknowledgement of the widely accepted challenge 
of designing a cyber secure product without introducing 
unintended negative consequences on usability and pa-
tient safety, highlights the limitations in designing a cyber 
secure product. Medical device manufacturers (MDM) 
are encouraged to consider risk-based controls, which 
conflicts with the recommendation of a controls-based 
approach, mentioned in Chapter 4. The introduction 
concludes with cybersecurity lifecycle challenges, and 
a suggestion for the development of a manufacturer’s 
business model, that makes cybersecurity a distinct 
structural part of the business.

A helpful analogy of a home, bank vault, and a pre-
cious asset is referred to throughout Chapter 2, Basic 
Cybersecurity Concepts, which effectively convey the 
fundamental concepts and challenges of cybersecurity 
and risk management. The key concepts of vulnerability 
and threats are articulated in simple, easy-to-understand 
terms. As the cybersecurity landscape evolves around 
the globe, terminology develops meanings that can 
seem rather vague, and often mean different things to 
different people, which might be a little disconcerting 
to a novice. The author approaches this conundrum by 
adopting certain definitions from authoritative sources 
and using them consistently throughout the book. As a 
result, the reader has a stable foundation from which to 
explore and understand the core principles. 

The medical device’s information security objectives 
are described as availability, integrity, and confidential-
ity in order of priority. However, one could argue that 
integrity has a higher priority since an altered record is 
more likely to go unnoticed, potentially causing wide-
spread harm before it is detected, whereas the unavail-
ability of information is obvious and should result in 
the implementation of contingency plans. This chapter 
clearly describes five categories of controls used to re-
duce the likelihood of an attack being successful. One of 

the categories, cryptography, is explored in detail with 
a study of the major cryptographic techniques used to 
establish secure communications between the sender 
and the intended receiver. The level of detail given is 
appropriate for one who is new to this discipline and is 
informative enough to help a designer make decisions 
about the most appropriate method to implement.

Standards and regulations, which aim to ensure 
manufacturers build safe medical devices, are develop-
ing to include cybersecurity requirements. The increas-
ing focus on cybersecurity is the subject of Chapter 3, 
Regulatory Overview and includes a summary of the 
current US and EU regulatory frameworks. It is recog-
nized that a robust quality management system (QMS) 
is necessary for manufacturers if they are to meet the 
standards expected by the regulatory authorities.  This 
chapter discusses key manufacturing quality standards, 
suggesting cybersecurity is not yet fully formed in them, 
and in fact lags behind some standards that HDOs have 
had access to for some time. Manufacturers struggling 
to adapt are offered useful guidance on how to achieve 
a cyber aware QMS with a suggested 5 step process for 
introducing regulatory requirements into an existing 
system. 

In Chapter 4, The Product Cybersecurity Organisa-
tion, the author suggests that with few tools available 
to quantify cybersecurity impact it is difficult for MDM’s 
decision-makers to be convinced of the benefits of invest-
ing. One could argue that making the case for investing 
is not difficult because of many well-known instances 
where damage has occurred from cyber-attacks on IT 
systems – the connected medical device is another type 
of IT system prone to the same attacks therefore, much 
is already known about exploitable system weaknesses. 
The author prefers a controls-based framework as op-
posed to a risk-based framework for building a cyber 
secure product. I believe that both frameworks have a 
place in design and there will always be an element of 
risk-based design due to the costs in terms of build and 
device performance. Recommendations for addressing 
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organizational shortfalls are made by offering key building 
blocks to achieving a product cybersecurity organization. 

Cybersecurity risk management is a complex field and 
the author clearly wanted to give more attention to this 
area therefore it occupies Chapters 5 and 6. Chapter 5 
predominantly addresses risk assessment and looks at 
threat modeling from system and subsystem levels. To 
help demonstrate a systemic threat and vulnerability 
modeling approach, an infusion pump with network 
connectivity is specified, and used as an example. This 
provides a convenient vehicle to explain the transferra-
ble process for assessing cybersecurity risk. There is a 
lack of threat modeling tools specific to medical devices 
but there are modeling tools for IT systems that can be 
adapted. The author demonstrates this by using Micro-
soft’s STRIDE framework to identify system threats and 
complete a threat model.

Chapter 6, Cybersecurity Risk Management-II, 
builds on the previous chapter with an illustration of 
a complete system cybersecurity risk model. The main 
theme of this chapter is the response to an identified 
risk. The infusion pump example specified in Chapter 
5, again proves useful but this time to explore system 
threats and the corresponding responses or controls. 
The MDM cybersecurity designer is walked through 
high-level examples of threat articulation, responses, 
and undertaking a risk-benefit analysis.

It is recommended that technical controls are trace-
able to regulations and standards. Chapter 7, Cyberse-
curity Design Engineering, takes a look at these controls 
identifying them as master controls, and with examples, 

key factors for building cyber-secure medical devices 
are considered. A brief look at the limiting factors in 
the hardware and battery-operated devices clearly 
demonstrates the challenge of incorporating effective 
cybersecurity controls without degrading performance. It 
would have been useful to provide examples from other 
safety-conscious industries such as aviation or nuclear 
power, which are at an advanced stage of maturity.

 Chapter 8 delves deeper into five more capabilities of 
an MDM that were defined in Chapter 4. Each capability 
is clearly described, providing industry insights with 
recommended best practices. 

The final chapter, Chapter 9, Product Security Gov-
ernance and Regulatory Compliance explores two more 
capabilities that an MDM should demonstrate. This 
chapter describes the governance elements required 
to satisfy regulations, which are fundamentally sup-
ported by a QMS. The advice given here is simple and 
clear - MDM’s need to continually refresh their resources 
and processes, and be transparent about the product’s 
cybersecurity posture.

Although this book is aimed at medical device manufac-
turers (MDM), I feel it is suited to anyone with an interest 
in medical device cybersecurity, including those working 
in healthcare delivery organizations. A lot of ground is 
covered mostly from a regulatory and compliance chal-
lenges angle; as a result, it only provides an overview, 
which the author concedes. However, the reader will find 
this book a useful springboard, from which to develop 
a greater understanding of a fast-evolving domain. This 
book successfully provides a framework for MDMs to 
design a cybersecurity-focused organization. 
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Comparison of Automatic Sleep Stage Classification 
Methods for Clinical Use

By Alexei Labrada, Elsa Santos Febles, José Manuel Antelo 

Cuban Neuroscience Center (CNEURO), Cuba

ABSTRACT
Sleep stage scoring is necessary for diagnosing several sleep disorders. However, it is an intensive and repetitive task and a vital 
automation candidate. This work seeks to evaluate different kinds of Machine Learning based classification algorithms available 
in the scientific literature to determine which one fits better the clinical practice requirements. The comparison is made with 
a predefined experimental design, using electroencephalography, electrooculography, and electromyography signals from the 
polysomnographic records of the Sleep-EDFx dataset. The comparison considers the accuracy and speed of algorithms based 
on Linear Discriminate Analysis, Support Vector Machines, Random Forests, and Artificial Neural Networks. The latter group 
includes the Deep Neural Networks DeapFeatureNet, based on Convolutional Neural Networks, and DeepSleepNet, additionally 
based on Recurrent Neural Networks. It is determined that several of the tested algorithms boast high accuracy levels (85%). 
From them, DeepSleepNet is chosen as the fittest due to its considerable advantage in execution time. Nevertheless, the final 
result should always be reviewed by the experts.  
Keywords – polysomnography, sleep stage scoring, machine learning, deep learning, signal processing.
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INTRODUCTION
Sleep stage scoring is necessary for diagnosing several 

sleep disorders, including insomnia, sleep apnea, narcolepsy, 
and hypersomnia. According to the American Academy 
of Sleep Medicine (AASM), this operation entails the divi-
sion of a polysomnographic record (PSG) in consecutive 
30-second windows, called epochs. Each epoch has to be 
classified as wakefulness (W), REM sleep (R), or one of 

three non-REM sleep stages: N1, N2, or N3. * Addition-
ally, AASM defines the rules that have to be followed to 
perform the scoring based on the visual examination of 
each epoch of the PSG record.

A PSG record shows the behavior throughout the time 
of various electrophysiological signals. The three most 
important signals are (1) electrical activity in the cerebral 
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cortex, measured using electroencephalography (EEG); (2) 
in the face muscles, using electromyography (EMG); and 
(3) the eye movements, using electrooculography (EOG). It 
may also include the cardiac activity or electrocardiogram 
(ECG), the respiratory activity, and the body movements. 

The scoring rules rely on identifying various patterns in 
the signals, including the Alpha, Beta, Theta, and Delta 
Activity, K complexes, Spindles, REM, and SEM.** Table 
1 summarizes some of these patterns. 

TABLE 1. Common Patterns in Polysomnographic Signals 

Pattern Stage Signal Frequency Morphology

Alpha Activity W, N1 EEG 8 - 13 Hz
Beta Activity W, N1, R EEG 14 - 30 Hz

Theta Activity NREM, R EEG 4 - 8 Hz
Delta Activity N3, R EEG 0.5 - 4 Hz

Spindle N2, N3 EEG 12 - 14 Hz
K Complex N2, N3 EEG 0.5 - 1.5 Hz Biphasic high amplitude peak
Slow waves N3 EEG 0.5 - 2 Hz High amplitude waves

EEG = electroencephalography.

The PSG records may last for 8 hours, so the number 
of epochs is close to a thousand. Therefore, the scoring 
process is intensive, repetitive, and prone to errors. The 
scientific literature describes many algorithms that allow 
the automation of the process by using various Machine 
Learning techniques. However, the low inter-scorer 
agreement level,1,2 among other limitations, has limited 
the accuracy of the algorithms and, hence, the reach of 
the automation process.

For instance, Fraiwan et al. 3 use the Continuous Wavelet 
Transform of the EEG signals as features and a Linear Dis-
criminant Analysis (LDA) based classifier. As a result, they 
reach an 84% accuracy level with the MIT-BIH4,5 dataset 
records. Susmakova & Krakovska6 also use an LDA-based 
classifier, but their algorithm extracts a wider variety of 
features from different signals. Furthermore, they prove 
the importance of the information contained within the 
EOG and EMG signals to discriminate some of the stages.

Koley & Dey7 evaluate the performance of a Support 
Vector Machine (SVM) based classifier with different 
combinations of features. Their algorithm has an 89% 
accuracy on their own dataset, close to the inter-scorer 
agreement level. Aboalayon et al.8 also use an SVM clas-
sifier, reaching a 92.5% accuracy on records from the 
Sleep-EDF5,9 dataset.

Set et al. 10 compare the performance of different classi-
fiers, including Decision Trees (DT), Random Forests (RF), 
SVM, and Artificial Neural Networks (ANN). Moreover, they 
employ various feature extraction techniques, counting 
the Discrete Wavelet Transform (DWT). As a result, they 
determine that the RF obtains the best results, reaching a 
97% accuracy with their own records. Finally, Aboalayon 
et al.11 compare the DT, SVM, ANN, K-Nearest Neighbors, 
Naive Bayes (NB), and LDA classifiers. In their work, the 
DT classifier obtained the best results with a 93% accuracy 
on records from the Sleep-EDF dataset.

Finally, the Deep Learning techniques also have gained 
a foothold in sleep stage scoring. For example, Zhang et 
al.12 propose using a Recurrent Neural Network (RNN) 
as a classifier but using conventional feature extraction 
methods. Their algorithm reaches 80.25% accuracy on 
the SHHS5 dataset records. Alternatively, Yildirim et al.13 
present a Convolution Neural Network-based algorithm 
that uses convolutional layers for feature extraction, 
with a 91% accuracy on Sleep-EDF records. Additionally, 
Supratak et al.14 use a Convolutional Neural Networks 
(CNN) combined with an RNN, reaching an 82% accuracy 
on the same records.

The goal of this work is to select a sleep stage scoring 
algorithm to facilitate the work of the experts. Furthermore, 
the algorithm should be included in a software system 
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for the clinical analysis of polysomnographic records. 
Therefore, the selection should be based on the accuracy 
of the predictions and consider execution time and the 
general availability of the input data. With that in mind, 
the performance of several algorithms from the scientific 
literature will be compared using the same records and 
in similar conditions.

MATERIALS
The work uses PSG records from the Sleep Cassette 

dataset belonging to Sleep-EDFx.5,9 The dataset has 153 
subjects between 25 and 101 years old and was scored by 
several experts following the Rechtschaffen and Kales (R 
& K)15 rules. The records include two EEG and one EOG 
signal, samples at 100 Hz, and one EMG signal at 1 Hz. 
Both EOG and EMG signals are considered in this work, 
but only the Fpz-Cz channel is used from the EEG signals. 
That way, all the implemented algorithms depend only on 
the minimum parameters of any PSG record.1

The dataset is split into two parts of approximately 
the same number of records. The first half contains the 
subjects with identifications 00 through 38 and is reserved 
for training the scoring algorithms. The second one, with 
subjects 40 through 82, is used to evaluate and compare 
the performance of said algorithms.

METHODS
The analyzed algorithms’ execution time can be split 

into three main phases: Data preprocessing, feature ex-
traction, and classification. The preprocessing and feature 
extraction phases are implemented in the Python and C# 
programming languages. For the classification, the work 
additionally employs the Weka software system16,17 from 
the University of Waikato, New Zealand.

Preprocessing
The goal of the preprocessing phase is to prepare the 

data for the feature extraction phase. To achieve it, all 
signals are uniformly sampled at 100 Hz, and no digital 
filtering is applied beyond what is already included in the 
dataset: 0.5 to 100 Hz range for EEG and EOG and 0.7 to 
16 Hz, for EMG. The records are segmented in 30-second 
windows that match the epochs that will be classified later. 
Also, the third and fourth non-REM sleep stages from R & 

K are combined into one Slow Wave Sleep or N3 stage1,7 
to fit better the AASM stages. Additionally, the unknown 
or invalid sleep stages are excluded from consideration. 

The wake stages before the first and posterior to the last 
sleep stages are also excluded from the training dataset 
records. The latter operation reduces the disparities in 
the amounts of epochs classified with each sleep stage. 
Besides, more importantly, for the RNN classifiers, it does 
not affect the continuity of a record’s epochs.

Feature Extraction
The feature extraction phase obtains descriptive values 

that reflect the information inside the relevant signals for 
the classification process. The values or features used in this 
work are obtained by analyzing the signals in each epoch 
in the time domain, frequency domain, time-frequency 
domain, and other nonlinear means.

Descriptive Statistics
These features are obtained by computing descriptive 

statistics from the signal’s samples. The Mean, Variance, 
Kurtosis, Skewness, and 75th Percentile have been em-
ployed in this work.

Entropy
Entropy is a measure of the irregularity of a signal in 

the time domain.18 Equation 1 shows the formula proposed 
by Shannon for this measure:

where p(x_i ) is the probability of a signal sample hav-
ing the value x_i.

Other estimation methods, including the Approximate 
Entropy, are displayed in equation 2.

The values of ϕ can be obtained using an algo-
rithm that represents the signal in the phase domain 
Xi={xi, x(i+1), ..., x(i+(m-1)) } and calculates the distance between 
those patterns using the L1 norm. Then,

(1)

(2)
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 where           is the amount of Xj patterns that satisfy 
∥Xi-Xj ∥1≤r. 
In this work, the pattern length (m) is 2 and r is the 

standard deviation of the signal in the epoch, multiplied 
by 0.1, as estimated in.18

Largest Lyapunov Exponent
The Largest Lyapunov Exponent (LLE) indicates how 

unpredictable a signal is. It has been demonstrated that it 
can help discriminate the N1 and N2 stages.7 The algorithm 
proposed by19 allows estimating LLE by calculating the 
distances between the most similar trajectories, which 
are also distant in the time domain. Equation 4 describes 
this distance,

where τ is the threshold in time domain and 
Xi={xi, x(i+J), ..., x(i+(m-1)J)} is a trajectory in phase domain. 
Once the distances have been calculated, the LLE can be 
obtained using linear regression with equation 5.

In our work we use the values 10 and 7 for m and J, re-
spectively, while τ is the mean period of the signal (MNF-1).

Fractal Dimension
The fractal dimension estimates the fractional dimen-

sions of the geometric shape of a signal in the time do-
main.18 This measure is especially useful for recognizing 
the N3 stage.7

The Higuchi algorithm calculates the fractal dimen-
sion as the slope of the mean squares fit of the values of 
log(L(k)) against log(1/k) for k between 1 and kmax. The 
values of L(k) are calculated using the equation 6:

where Lm(k) is the mean length of the sequence

calculated with equation 7:

In this work we use the value 40 for kmax, that was 
estimated in.18

Discrete Fourier Transform
The Fast Fourier Transform (FFT) algorithm efficiently 

estimates the frequency spectrum. The spectrum can 
be used to obtain the mean frequency of the signal, the 
spectral entropy, and the relative spectral density of the 
relevant frequency bands (Table 1).

The mean frequency can be calculated using equation 8:

where M in the amount of frequency bins, fi are the fre-
quency values and P is the normalized spectral frequency 
(∑Pi=1).20 Similarly, the spectral entropy of a frequency 
band can be obtained from equation 9:

where fl and fh are the minimum and maximum fre-
quencies, respectively and Nf is the amount of frequency 
bins in the range [fl,fh].18

High Order Spectra
The High Order Spectra analysis can extract features 

related to third-order statistics of a signal.21 Before cal-
culating the features, the Bispectrum has to be estimated 
using equation 10,

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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where Xi is the Short-Time Fourier Transform (STFT) 
of the signal on the i-th window and W is the number of 
windows. The STFT in a vicinity of xi is the FFT of the 
product of the signal and a window function centered on 
xi. 22 In our work, we use 2 seconds long Haan windows, 
with 1 second (50%) of overlap between consecutive 
windows. The Bispectrum is symmetric in both axes, so 
its domain of interest is defined in the expression 11.

Once the Bispectrum is calculated, it is possible to 
calculate its mean amplitude, the Normalized Bispectral 
Entropy (equation 12), its logarithmic sum (equation 13) 
and its mean frequency (equation 14):

Wavelet Transform
The Wavelet Transforms translate a signal into the 

time-frequency domain. The transformation approxi-
mates the signal inside a time window by a Wavelet base 
(ψ) using different time scales.22 The scale factors are 
inversely proportional to the frequency of the Wavelet 
base, as stated in equation 15,

where Ts is the sampling period and fψ is the mean 
frequency of the Wavelet base (3).

The DWT decomposes the signal in two coefficient 
vectors with N/2 values, satisfying

where Hψ and Gψ are dual filters with sub-sampling, 
related to the Wavelet base.22 The a1 vector contains an 
approximation of the original signal in the frequency range 
[0,1/4 fs ], while d1 is a detail vector in the frequency range 
[1/4 fs,1/2 fs ], where fs is the sampling frequency.10 The 
DWT can be computed again from vector a1, in order to 
obtain the vectors a2 and d2 with frequency ranges [0,1/8 
fs ] and [1/8 fs,1/4 fs ], respectively. Thus, successively, 
the signal can be decomposed in L levels, after which the 
vectors d1,d2,...,dL,aL belong to different frequency bands.

The entropy of each relevant frequency band (Table 
1) along the epoch in question can be calculated from 
the transform. We use the Daubechies function (db1) 
as the Wavelet base for the EOG signals and the reverse 
biorthogonal function (rbio3.3) for the EEG signals. Given 
the 100 Hz sampling frequency of the signals, once they 
are decomposed into 5 levels, the frequencies of the 
coefficient vectors approximately match the frequency 
bands in Table 1.

Classification
The classification phase is responsible for assigning 

a sleep stage to each epoch contingent on the features 
extracted from it. In our work, we use classifiers based 
on Linear Discriminate Analysis,3 SVMs,23 RF,23,24 ANN, 
and NB.23

Several kinds of Neural Networks have been analyzed, 
including Multilayer Perceptrons (MLP),10,25 CNN, and 
RNN. Specifically, we have tested the networks DeepFea-
tureNet (DFN) and DeepSleepNet (DSN),14 implemented 
on Python using Tensorflow. The former is a CNN, while 
the latter is a hybrid network combining a CNN and an 
RNN. Both algorithms use CNN for feature extraction, 
so they do not require the methods described in section 
Feature Extraction.

The implementation proposed for a single signal 
has been expanded to process the EOG, EMG, and EEG 
signals.14 This was achieved by taking advantage of the 
capacity of CNN layers to process several input channels 

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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and by increasing the size of the filters proportionally 
to the number of channels. The DFN network has been 
trained with 75 epochs, while DSN has required 25 more 
in fine-tuning. The source code is available at https://
github.com/ALabrada/deepsleepnet.

For the remaining classifiers, it has been used the 
implementations available in Weka, using their respective 
default parameters.

Evaluation
The performance of each algorithm has been analyzed, 

considering the accuracy (Acc) and Cohen’s kappa coef-
ficient. Additionally, the classification performance of the 
individual stages is considered using the Precision (PR) 
and Recall (RE) metrics.

RESULTS
The classification algorithms have been trained with 

the first half of the PSG records of the Sleep Cassette da-
taset. The set has 76 records that belong to 39 different 
subjects with identifiers 00 through 38. Table 2 shows the 
distribution of the stages assigned by the experts to the 
74354 epochs that have been used from those records.

The 10-fold cross-validation technique has been used 
to estimate the hyper-parameters of the models and the 
validation error. Table 3 shows the estimated errors.

The trained classifiers have been tested using the 
second half of the Sleep Cassette dataset, and the results 
have been compared. The set has 77 records that belong 
to 39 subjects with identifiers 40 through 82. A total of 
68.8% of the 208349 epochs belong to the wake stage. 

TABLE 2. Sleep Stage Distribution of the Analyzed Epochs 

Stage
Training Testing (partial) Testing (full)

Count Percent Count Percent Count Percent

W 14884 20.0 33410 33.9 143265 68.8 
N1 7536 10.1 14013 14.2 14013 6.7 
N2 30143 40.5 33906 34.4 33906 16.3 
N3 7954 10.7 5104 5.2 5104 2.4 
R 13837 18.6 12062 12.2 12062 5.8 

Total 74354 100.0 98495 100.0 208349 100.0 

TABLE 3. Validation Error using the Training Records 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 77.29 0.6882 0.902 0.438 0.775 0.817 0.785 0.804 0.398 0.869 0.843 0.695
NB 64.79 0.5324 0.748 0.320 0.738 0.507 0.659 0.689 0.249 0.668 0.925 0.619
RF 83.09 0.7674 0.868 0.623 0.830 0.896 0.822 0.904 0.365 0.906 0.863 0.825

SVM 79.49 0.7155 0.858 0.501 0.788 0.872 0.787 0.867 0.286 0.894 0.848 0.745
MLP 80.60 0.7334 0.883 0.515 0.808 0.867 0.790 0.874 0.342 0.885 0.838 0.794
DFN 74.27 0.6630 0.969 0.287 0.883 0.652 0.822 0.789 0.692 0.721 0.912 0.658
DSN 78.10 0.7055 0.906 0.326 0.854 0.756 0.911 0.901 0.427 0.812 0.726 0.817
AVG 76.80 0.6865 0.876 0.430 0.811 0.767 0.797 0.833 0.394 0.822 0.851 0.736
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Following the procedure that has been described in 
section Preprocessing, the disparity between stages can 
be decreased by reducing this quantity to the 33.9%. 
Table 4 shows a performance comparison between the 
algorithms using only the selected epochs, while Table 
5 shows the same comparison, but with all the epochs.

Finally, Table 6 compares the execution time of the 
algorithms while classifying the whole test dataset. The 
execution time of the algorithms that use classifiers imple-
mented in Weka is further split into the feature extraction 
and classification phases. The data has been collected in a 
personal computer with an Intel Core i5-4570 processor 
(CPU), 16 GB of DDR3-1600 memory (RAM), and executed 
in Microsoft .NET Framework.

DISCUSSION
The results show that the test error is less than the 

validation error when using the full records, but it is 
greater when using the selected subset of the epochs. 
This apparent discrepancy can be explained due to the 
previously mentioned high proportion of epochs classified 
with wake stages. Every one of the analyzed algorithms 
obtains relatively high precision and recall results clas-
sifying this stage.

In contrast, all algorithms attain poor precision and 
recall results that classify the N1 stage in absolute and 
relative terms. This behavior is consistent with other 
studies from the scientific literature,24 especially those 
using the Sleep-EDFx dataset.13,14,26–28 

TABLE 4. Performance Comparison of the Classifiers using the Partial Test Dataset 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 69.43 0.5776 0.911 0.385 0.664 0.465 0.723 0.759 0.279 0.840 0.752 0.563
NB 55.09 0.4109 0.841 0.329 0.594 0.241 0.555 0.604 0.231 0.582 0.954 0.515
RF 73.98 0.6335 0.858 0.504 0.692 0.637 0.737 0.853 0.183 0.887 0.756 0.652

SVM 72.93 0.6213 0.866 0.433 0.697 0.591 0.718 0.842 0.215 0.863 0.774 0.619
MLP 71.22 0.6009 0.817 0.399 0.724 0.558 0.682 0.856 0.244 0.784 0.770 0.634
DFN 67.78 0.5670 0.968 0.303 0.743 0.517 0.898 0.697 0.640 0.734 0.776 0.454
DSN 73.88 0.6308 0.864 0.347 0.772 0.812 0.959 0.894 0.419 0.744 0.553 0.675
AVG 69.19 0.5774 0.875 0.386 0.698 0.546 0.753 0.786 0.316 0.776 0.762 0.587

TABLE 5. Performance Comparison of the Classifiers using the Full Test Dataset 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 83.45 0.6804 0.981 0.340 0.644 0.429 0.655 0.913 0.279 0.840 0.752 0.563
NB 69.02 0.4682 0.966 0.222 0.504 0.197 0.380 0.766 0.231 0.582 0.954 0.515
RF 86.43 0.7263 0.966 0.466 0.666 0.622 0.711 0.947 0.183 0.887 0.756 0.652

SVM 85.73 0.7147 0.969 0.382 0.679 0.563 0.675 0.942 0.215 0.863 0.774 0.619
MLP 85.10 0.699 0.955 0.347 0.709 0.532 0.666 0.947 0.244 0.784 0.770 0.634
DFN 80.14 0.6366 0.991 0.270 0.687 0.415 0.879 0.862 0.579 0.774 0.772 0.432
DSN 85.30 0.6973 0.953 0.318 0.773 0.812 0.967 0.970 0.537 0.688 0.442 0.474
AVG 82.17 0.6604 0.969 0.335 0.666 0.510 0.705 0.908 0.324 0.774 0.746 0.556
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The DFN and DSN algorithms reach around 20% 
higher recall measures for this stage, but its influence is 
mitigated by lower values in other stages. The low clas-
sification accuracy of the N1 stage can affect the result of 
the sleep quality analysis,29 which makes the algorithms 
unsuitable for standalone usage and, thus, require the 
intervention of the experts.

From the first five algorithms, the ones using more 
conventional strategies, the RF-based classifier obtains 
the best results. This confirms the conclusions that were 
reached by previous studies.10,30 Furthermore, SVM, MLP, 
and LDA also obtain satisfactory results according to both 
performance metrics.

From the two last algorithms based on Deep Learning, 
DSN reaches superior results in all metrics other than 
DFN. However, during validation, our implementation of 
DSN is 4% lower in accuracy and 6% lower in Kappa score 
than the one reported by Supratak et al.14 with the same 
dataset, but using different hyper-parameters and half of 
the PSG records. Regarding the traditional algorithms, the 
accuracy of DSN classifying the test dataset is equivalent 
to the accuracy of RF within 1%.

Considering that several of the algorithms reach 
similar accuracy levels, their execution times are used as 
tie-breakers. The results in Table 6 prove that, from the 
analyzed algorithms, the ones based on Deep Learning 
require a significantly lower amount of time to identify 
the sleep stages of a PSG record.

CONCLUSIONS
As part of our work, we have compared the performance 

of a wide range of sleep stage scoring algorithms avail-
able in the scientific literature to find the one that better 
matches clinical use requirements. With that in mind, ac-
curacy and speed are used as the selection criteria for the 
comparison. The results prove that the RF, SVM, MLP, and 
DSN algorithms reach the greater accuracy levels while 
classifying, exceeding 85% in this metric and 0.69 in Cohen’s 
kappa. Moreover, from them, DSN is significantly faster, 
requiring less than 30 seconds to score a record’s epochs 
on average. The combination of both criteria determines 
that DSN is the most appropriate sleep stage scoring al-
gorithms for the context of the clinical practice, from the 
set of candidates taken into consideration. Nevertheless, 
the algorithms are much less accurate in classifying the 
N1 stage, so the experts should review the sleep stage 
scoring performed by DSN.
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ABSTRACT
SChoosing the best instruments, measurement techniques and the most qualified service provider is of paramount importance 
for an equipment calibration service. For the definition of the most qualified company, selection criteria and weights related to 
the criteria will be used. Thus, the main objective of this work is to choose the best service provider, that is, the most qualified to 
perform the calibration services of medical and hospital equipment, considering the listed criteria. The method used was AHP 
(Analytic Hierarchy Process). It makes it possible to prioritize, give weight and validate the consistency of the evaluation criteria 
(considering the importance and relevance). As a result, the validation of the criteria weights was obtained. The company that 
obtained the best score was the company hired for the service.  
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INTRODUCTION
The calibration of equipment, that is, the comparison 

of biomedical/physiological quantities measured or pro-
vided by biomedical equipment, compared to a standard, 
provide each equipment's errors. An internal team can 
calibrate biomedical equipment, provided qualified, with 
defined calibration procedures, appropriate instruments, 
traceability, etc. When calibration is performed by a 
third-party service provider, it is appropriate to perform 
a calibration process, with defined criteria.1 Enable the 
validation of the consistency of weights and measure-
ments of the selection criteria. Contribute in such a way 
that the best qualified company performs the calibration 
services of the equipment. Maximizing patient safety. One 
of the known methods is the AHP (Analytic Hierarchy 
Process) Method,2 which makes it possible to prioritize, 
give weight and validate the consistency of the evaluation 
criteria (considering the importance and relevance).3 SCB 
Associates4 proposes a model to validate the consistency 
of the weights assigned to each requirement evaluated. 
It is possible to use a scale with paired views of evalua-
tion parameters to assess the degree of importance.5 The 
main objective of this work is to choose the best service 
provider company, that is, the most qualified to perform 
medical-hospital equipment calibration services. Consider-
ing that the selection criteria and their weights will serve 
as a reference to choosing the company that obtains the 
best score, the specific objectives are: to prioritize, give 
weight and validate the consistency of the evaluation 
criteria (considering the importance and relevance) for 
the selection of service providers of calibration of medi-
cal- hospital equipment.   

METHOD 
The method used was the AHP,2 which allows prioritiz-

ing the evaluation criteria (considering the importance 
and relevance). The model provided by SCB Associates,4 
to validate the consistency of the weights assigned to 
each requirement evaluated. The following (Fig. 1) dem-
onstrates the fundamental scale, with nine classifications 
of importance used in this model. 

The initial weights for each criterion were defined 
by a specialized clinical engineering group composed of 
professionals with training of various academic levels and 
professional experiences of up to 25 years in the area. 

With expertise in calibration laboratory and calibration 
services. Quality national and international certifications. 
As well as knowledge of norms related to the subject. A 
spreadsheet was sent with the 14 evaluation criteria for 
each service provider who participated in the selection 
to obtain the answers.

RESULTS 
The matrix (Figure 2) below demonstrates the degree 

of importance given, according to a fundamental scale 
(as shown in Figure 1), in the paired comparations of 14 
evaluation parameters. 

The consistency index achieved with the method was 
7% (Figure 3), indicating a good weight distribution.6 

Then, considering the response of the service providers 
to the selection criteria, the specialized group of clinical 
engineering, listed the notes to each of the companies 
(Figure 4) so that it was possible to obtain the answer 
of which service provider was the best to perform the 
calibration of medical equipment.7

FIGURE 1. The schematic diagram of dental units.
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DISCUSSION 
It is important to highlight that it is necessary to 

evaluate and select the calibration service providers of 
biomedical equipment. The AHP methodology for the 
listed evaluation criteria was shown to be consistent. 
However, there can always be points to be improved and 
new versions to be proposed and tested, from this model. 
Or considering other models. 

CONCLUSION 
The AHP methodology proved to be adherent and 

assisted in the selection protocol of a calibration service 
provider. That is, it helped validate the weights of the 
criteria listed to evaluate the quality of the provider. 
Thus, it contributed to hiring the most qualified company 
to perform the calibration services of biomedical equip-
ment, considering the criteria listed. The application of 
this method improved the evaluation process and choice 
of the provider, impartially increasing confidence and 
comprehensiveness. Considering that the equipment park 
is dynamic, each year changes with new approaches and 
technologies. Given the above, it can be observed that 
the implemented proposition of improving this selection 
process was successfully achieved. 
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ABSTRACT
The health technology sector of low- and middle-income countries (LMICs) is bedeviled by performance failures that make it a 
significant obstacle to effective patient healthcare interventions. The predominant factors behind the sector’s poor performance 
have been identified as (a) inadequately trained technical personnel and (b) the unserviceable condition of medical equipment. 
Past studies show that after adequate training, there is an increase in the proficiency of in-hospital biomedical engineers, but 
the studies have been limited to the maintenance job description of the engineers. We present a case study of the successful 
installation of sophisticated medical equipment by an in-hospital engineer to demonstrate that comprehensive training can 
also develop the installation expertise of local engineers. The installation, which is usually accomplished by the equipment 
manufacturer, was delegated to the trained in-hospital engineer due to the COVID-19 pandemic.
Furthermore, the bulk of medical equipment in LMICs is imported, which has led to an over-dependence of their health sectors 
on non-indigenous technology to the detriment of local alternatives and know-how. The World Health Organization estimates 
that 7 out of 10 sophisticated medical equipment imported by LMICs are unserviceable due to the issue of compatibility and 
adaptability with the setting. Previous research focuses on equipment subsidy, frugal innovation, and health technology man-
agement to better adapt foreign equipment to the environment. Still, this paper explores the option of indigenous technology 
and expertise to provide in-country development of suitable and sustainable medical equipment.  
Keywords – COVID-19, medical equipment, engineer, LMIC, training, installation, local production.

Copyright © 2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY): Creative Commons - Attribu-
tion 4.0 International - CC BY 4.0. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.globalce.org
http://globalce.org
http://globalce.org


23	 J Global Clinical Engineering Vol.5 Issue 1: 2022

INTRODUCTION
As the world’s nations grappled with the COVID-19 

pandemic, several unprecedented measures were ad-
opted to limit the spread of the disease. Social distancing, 
quarantines, flight restrictions, lockdowns, and other 
routine-disrupting changes were imposed by govern-
ments at all levels. 

On the 21st of March 2020, Nigeria went into lockdown, 
and restrictions were introduced on travel by land and 
air.1 This, however, had only a partial impact on hospital 
activities because health workers, as essential service 
providers, were exempted from the restrictions. Doctors, 
nurses, and other hospital personnel kept working to 
provide medical care and manage the increasing patient 
volume due to coronavirus. Treatment of the disease 
required many types of lifesaving medical equipment, 
especially in intensive care units; therefore, more than 
ever, clinical engineers were needed to ensure the unin-
terrupted operation of medical devices.2

The job function of clinical engineers includes equip-
ment maintenance, acceptance testing, user training and 
education, clinical research and development, quality as-
surance, and productivity assessment.3 It is important to 
note that clinical engineering began in the late 1960s to 
address patient-safety concerns as increasing numbers of 
medical devices deployed in teaching hospitals. Not long 
after that, a preponderance of electrical safety failures 
brought the maintenance job description of in-house 
engineers to the fore.4

Clinical engineers develop their maintenance and 
troubleshooting skills through a combination of a hands-
on learning experience, in-service training, and short 
courses designed to equip them with the skills to handle 
a wide range of medical devices. However, when hospitals 
acquire new or sophisticated technology with mainte-
nance requirements beyond the engineer’s general skills, 
maintenance contracts are signed, or equipment-specific 
training is sought. Hospitals typically opt for maintenance 
contracts with the original equipment manufacturers 
(OEMs) or their agents in high-income countries. On the 
other hand, hospitals in low- and middle-income coun-
tries (LMICs) opt for training because of the long distance 
between them and the OEMs.5 

Unfortunately, the equipment-specific training is ad-
equate on most occasions, and the hospitals are forced 

to resort to high-priced maintenance programs that still 
involve the OEMs or their third-party agents.3,6 The local 
engineers are authorized to carry out only run-of-the-mill 
repairs while the heavy-duty maintenance is performed 
by the OEMs, usually after long waiting periods with a 
likelihood of poor treatment outcomes for the patient.7 

Delay in cancer treatment leads to increased patient 
distress, increased risk of local recurrence, and reduced 
patient survival over time.8,9 In LMICs, where delayed 
treatment is common, it can be attributed to late presen-
tation in patients, inadequate radiation therapy facilities, 
insufficient trained manpower, and machine downtime.10,11 
Therefore, the goal of the in-house engineer is to minimize 
downtime so that patients can avail themselves of the 
already limited therapy units. 

A previous paper has shown that with adequate train-
ing, in-house radiotherapy engineers (RE) could develop 
improvisation skills to reduce machine downtime in a 
Nigerian radiotherapy center.12  This paper is a case study 
that shows that in-house RE can go beyond the usual 
maintenance tasks to installing sophisticated equipment 
that preserves OEMs and their agents with comprehensive 
training. However, it is worthy of note that the case study 
could not have arisen but for the advent of COVID-19.

A SUCCESS STORY
Before the COVID-19 lockdown, High Dose Rate (HDR) 

brachytherapy equipment was set for installation in four 
radiotherapy centers across Nigeria. The equipment, a 
25-channel Saginova HDR After loader Brachytherapy 
system (Figure 1) manufactured by Eckert & Ziegler BEBIG 
GmbH Germany, had been shipped in, and engineers from 
the company were scheduled to follow for the installation 
work when the pandemic struck, and a restriction was 
placed on traveling.

As travel restrictions lingered, the situation became 
worse because, at the time, the country had only one 
functional brachytherapy center for its growing number 
of oncology patients. Moreover, the delay grew costlier 
with each passing day as the cancer cases worsened 
from lack of treatment and the radioactive decay of the 
expensive Co-60 sources.13,14 It was therefore imperative 
to find a quick solution. 
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The equipment manufacturer reached out to an RE in 
the Radiation Oncology Department, University College 
Hospital Ibadan (UCH), who had undergone training at 
their company factory (Figure 2). The training was spon-
sored by UCH after installing the same brachytherapy 
equipment in the hospital by the manufacturer in 2019. 

The training
The five-day course gave the trained technical special-

ists level A and level A+ proficiencies. For example, the 
level A certification authorized them to carry out standard 
maintenance and basic interventions on the equipment as 
advised by the manufacturer, while the level A+ certification 
authorized them to load and unload radioactive sources.

Each trainee was provided with a full-color illustrated 
manual containing step-by-step information on how to 
unpack the equipment, install it, test it while inactive, 
load the Co-60 source, test it while active, and adjust the 
equipment settings. It also included schematic and circuit 
diagrams and layout diagrams of the standard control 
and treatment rooms. The teaching method employed 
was hands-on learning, where trainees first observed 
the instructors and then practiced the lessons. Common 
real-life faults were simulated, and the trainees were 
instructed on how to solve them. 

Each training module ended with a Q and A and a quiz 
to test for mastery of the module. The trained and autho-
rized engineers were then awarded certificates of training.

The installation
The RE successfully installed the equipment, loaded the 

Co-60 source, and conducted acceptance testing in the four 
radiotherapy centers (Figure 3). Barring the occasional 
logistic problems, the installation was uneventful and did 
not lead to problems the German engineers would not 
have encountered, such as broken cables and a damaged 
SafeLogic compact arising from inadequate packaging.

The OEM provided remote guidance throughout the 
installation process, and the equipment was installed 
and handed over to the centers in good time. The RE also 
worked with the resident medical physicists to ensure that 
all technical parameters of the equipment were within 
acceptable limits.

The trainee becomes a trainer.
Before embarking on the training, the goal of the RE 

was to be reasonably proficient in maintaining the equip-
ment in his center and other centers in the country that 
may require his service. In addition, having witnessed the 
long waiting periods that LMIC hospitals are subjected 
to when working with OEMs and agents, he planned to 
become an alternative service engineer with the least 
response time. This desire was made known to the train-
ers, and they provided as much instruction as possible 
within the limited training period. 

However, the engineer’s goal was flawed because it 
took up to two days to arrive at some centers, and if he 
were their service engineer, the equipment would be out 

FIGURE 1. A 25-channel Saginova HDR afterloader brachytherapy 
unit installed by the local engineer.

FIGURE 2. The radiotherapy engineer at the training facility 
in Germany.
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of order for that long. Consequently, he rethought his plan 
and decided to train the centers’ in-house engineers as 
much as possible so that they could independently main-
tain their equipment. 

One center sponsored their engineer to join in install-
ing the equipment of another center after participating 
in the installation at his center. The aim was to use the 
opportunity to further hone the expertise of their engineer.

BENEFITS ENJOYED FROM THE SUCCESSFUL 
INSTALLATION

Asides from the obvious benefits of timely brachytherapy 
treatment for cancer patients and obtaining value from 
the expensive Co-60 source, installing the equipment 
by a local RE had significant economic benefits for the 
hospitals. The two-way airfares for OEM engineers were 
eliminated, and the per diem was considerably reduced, 
saving the government some foreign exchange earnings. 
In addition, the experience boosted morale and increased 
the technical skills of the RE and his colleagues. It also 
gave him the expertise for guiding the prepurchase and 
procurement planning process of medical equipment in 
his department.

Finally, the trip to other radiotherapy centers helped 
develop a strong collaborative relationship between the 
RE and the in-house engineers of the centers. 

LOOKING AHEAD
The healthcare needs in LMICs are tremendous, as 

is the quantity of medical equipment required to meet 
them. However, the bulk of medical equipment in these 
regions is imported or supplied by foreign donors. For 
example, a survey of 1,242 equipment in ten Indonesian 
hospitals revealed that only 4.2% were manufactured in 
that country.15 The figures for Nigeria show the country 
is dependent on importation for about 99% of its medi-
cal equipment needs, and the small local production in 
the country is limited to simple devices like syringes. 
Regrettably, the impact of the country’s $170m medical 
equipment market on patient care is still underwhelm-
ing as large numbers of imported medical equipment 
are unusable.16 

Up to 70% of sophisticated medical equipment im-
ported into LMICs is nonfunctional because of a mismatch 
between the equipment design and the setting where they 
are used. These “off-the-shelf” products fail to meet the 
environmental profile needs of LMICs already suffering 
from an unstable power supply, lack of clean water, an 
abundance of dust, and a hot and humid climate.17 Even 
when the equipment is stripped down, they are still not 
explicitly designed to meet the 4 As for preventing equip-
ment mismatch to a market: availability, accessibility, 
appropriateness, and affordability.18 

FIGURE 3. Setting up a treatment console (left). A fully installed treatment console (right).
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In view of the above, LMICs should begin exploring 
the local production of low-resource medical equipment, 
starting with non-complex ones. Such equipment would 
be designed with the environmental profile in mind and 
consider practitioner/end-user input to meet the appro-
priateness factors. It would be made from locally available 
raw materials and stripped of nonessential features to 
solve availability and affordability problems.19 However, 
this option remains only an aspiration until the many 
barriers facing local production are surmounted. 

One of the principals but unintended barriers is the 
influx of donated foreign medical equipment. Low cost 
or donated medical equipment leads to aid dependency 
in LMICs and a stifling of the country’s development.20 
Another barrier is the absence of an atmosphere conducive 
to R&D and innovation in LMICs.18 R&D is funded mainly 
by industries in high-income countries, but in LMICs it is 
publicly funded through academic institutions. However, 
in Nigeria, for example, the better part of the time and 
activity of universities is devoted to teaching and assess-
ing students, while research work is a secondary activity. 
Reasons like poor funding, insufficient research personnel, 
extraneousness of research focus on societal needs, and 
a delink between the academia and productive sectors 
have been attributed to the situation.21

To reverse this trend, the government needs to reap-
praise its allocations to the education sector, where the 
2021 expenditure on salaries and overhead is 429% of the 
capital budget of the Federal Ministry of Education.22 It 
also needs to double the funding for the Federal Ministry 
of Health to meet its 2011 Abuja Declaration of committing 
at least 15% of the annual budget to the health sector.23 
The two ministries and the Federal Ministry of Science 
and Technology must also work together to midwife the 
all-important collaboration among academic institutes, 
medical practitioners, and industries to kick off the pro-
duction of domestically-designed medical equipment 
from locally-sourced raw materials for use in the nation’s 
hospitals. 

Other challenges that must be addressed before local 
production can begin in LMICs include establishing a 
regulatory framework for health technology assessment, 
harmonization of device classification, standardization 
for product safety and quality, and creating an enabling 
business environment. 23 

In-house hospital engineers can also contribute their 
quota to the local production of medical equipment in 
LMICs through additive manufacturing. A few hospitals 
have pioneered 3D printing laboratories for the fabrica-
tion of person-specific needs that are not on the market. 
These so-called hospital factories use additive manufac-
turing to make products like individualized prosthesis for 
patients and anatomo-functional models used for surgi-
cal planning and patient education.24 Other areas where 
3-D medical printing is used include the production of 
microfluidic devices for laboratory test, meal assistance 
devices for spinal cord injury patients, immobilization 
devices for radiotherapy and fixation plates implanted 
by orthopaedics surgeons.25-27  Hospitals in LMICs can 
equip their biomedical engineering departments with 
3-D printing labs to fabricate some of these personalized 
medical products.

The essence of locating the laboratory in the hospital 
is to foster collaboration between medical practitioners, 
patients (end users), and the engineers from the design-
ing to production stages. While setting up the lab may 
be initially cost-intensive, hospitals can recoup their 
investments with a good business model, and patients 
can get apropos service at a fraction of the cost of getting 
it from OEMs.

CONCLUSION 
Achieving adequate health technology in LMICs is 

long and fraught with many difficulties. Progress in the 
sector has come in fits and starts and has barely made a 
dent in providing healthcare facilities with the resources 
they need to provide patients with the care they need. 
But with a strategic plan to develop the local ‘man and 
machine’ and an unflinching determination to commit 
time and financial resources to the plan, LMICs too can 
begin the journey towards self-sufficiency in their practice 
of medicine.
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Fiza Shaukat is a native of Pakistan living in the United 
States. As a biomedical engineer, she was eager to improve 
her country’s medical devices and digital health strate-
gies. She approached us in 2018 seeking expertise in 
clinical engineering, which focuses on the point-of-care 
intersection between the use of health technology and 
the expertise needed for optimal support and resource 
management.

Pakistan, like many countries, has faced myriad sys-
temic challenges, which were amplified by the covid-19 
pandemic; these challenges include a fragmented delivery 
system and a lack of interoperability between medical 
devices, electronic health records, and other recent 
health technologies. We worked with Fiza on a health 
technology asset management method. Later, during the 
pandemic, we pointed her and her in-country colleague 

http://www.globalce.org
http://globalce.org
http://globalce.org
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Tazeen Bukhari to the covid-19 inventory tool, offered by 
the World Health Organization (WHO), to assess national 
gaps in the availability of medical devices and oxygen; the 
information was used to inform the Pakistani Ministry of 
Health’s plan for confronting the pandemic.

Meanwhile, Fiza faced the premature loss of her 
grandmother due to cardiac complications—she had not 
received care in a timely manner because patient data 
and test results could not be shared quickly between 
providers. Fiza took initiative so that her loss would not 
be repeated for other families. She brought a technical 
solution to the point of care, using clinical engineering 
and emerging health information technologies.1

As clinical engineers (CEs), we have encountered 
variations of Fiza’s story in several countries. Clinical 
engineers support and advance patient care outcomes 
by applying engineering, life sciences, and managerial 
skills to optimize healthcare technology during its life 
cycle deployments. They are sought for their systems 
thinking expertise, to conduct an independent validation 
of healthcare products, identify support requirements, 
and ensure that medical device users’ needs are met and 
that products are accessible and ready for patients. They 
assess and manage the use of health technologies, which 
WHO defines as “the application of organized knowledge 
and skills in the form of (medical) devices, medicines, 
vaccines, procedures, and systems developed to solve a 
health problem and improve quality of care and/or life,” 
including both traditional medical devices and emerging 
digital health tools.2

To illustrate the range of CE contributions, we offer 
two examples.3 The first is in device innovation. In re-
mote desert-like regions of Western and South Australia 
treatment for trauma victims requires long-distance and 
space-limited transportation. The patients are often in 
shock and require a blood/fluid transfusion. But these 
fluids are kept at a very low temperature, and rapid infu-
sion of cold fluids can worsen a patient’s condition or even 
induce hypothermia. Two clinical engineers developed a 
fluid/blood warmer that does not require electrical power 
but uses the latent heat principle to warm intravenous 
fluids at accident sites, overcoming the lack of suitable 
portable fluid warmers that are not dependent on main 
electrical or battery power.

The second example involves risk reduction and safety 
of medical devices at the point of care. A clinical engineer 
and his team in Mexico’s National Center of Health Tech-
nology Excellence investigated national management of 
medical equipment in public hospitals. They concluded 
that, among the country’s 32 states, health technology 
management was effectively coordinated by trained CE 
practitioners.4

Clinical engineers are trained to identify challenges and 
opportunities to improve healthcare delivery through the 
adoption of effective and safe technological solutions. For 
example, “alarm fatigue” can be eliminated in ICUs with 
smart medical device alarms that triage the urgency of 
attention needed, distinguishing life-threatening events 
from those less urgent. And remote care for patients 
isolated due to infection concerns can reduce the time 
and cumbersome logistics involved for care providers to 
monitor and tend to their patients.

Clinical engineers recognize the need for both systems 
expertise in healthcare partnerships and the development 
and implementation of national policies to reduce frag-
mentation and inefficiencies in healthcare delivery.5 The 
case for such expertise and partnerships has been made 
in classic consensus reports of the National Academy of 
Medicine—To Err Is Human: Building a Safer Health System 
(2000), Crossing the Quality Chasm: A New Health System 
for the 21st Century (2001)—and in a joint publication 
with the NAE, Building a Better Delivery System: A New 
Engineering/Health Care Partnership (2005). The latter 
report notably described “opportunities and challenges 
to using systems engineering, information technologies, 
and other tools to advance a twenty-first century system 
capable of delivering safe, effective, timely, patient-centered, 
efficient, equitable health care” (p. vii).

We are encouraged to see recent evidence of engineer-
ing partnership improving healthcare delivery, in the May 
2021 NAE Perspective, ERs Rise to the Covid-19 Challenge: 
Teamwork between Engineers and Healthcare Providers 
Cuts ER Waiting Time, and in a Johns Hopkins University 
January 2020 article, Enter the Surgineer. But the vision, 
alas, is yet to be fully realized.

Since 2020 the US healthcare delivery sector has lost 
over 300,000 workers,6 exacerbating a staffing shortage 
that existed before the pandemic. Nurses are among the 
most impacted group.7

https://pubmed.ncbi.nlm.nih.gov/25077248/
https://pubmed.ncbi.nlm.nih.gov/25057539/
https://pubmed.ncbi.nlm.nih.gov/25057539/
http://nap.edu/11378
http://nap.edu/11378
https://www.bme.jhu.edu/news-events/news/enter-the-surgineer/#:~:text=%E2%80%9CIt%20is%20to%20'bury%20the,member%20of%20the%20clinical%20workforce.
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A new approach that includes shared interprofessional 
training can help alleviate the situation by training clinical 
engineers for engagement at the point of care. We envision 
broader systems responsibilities for all care delivery team 
members, to overcome the segmented and increasingly 
specialized healthcare workforce and thus ensure higher 
quality and safety through a new collaborative approach.

THE INTERSECTION OF TECHNOLOGY AND 
HEALTHCARE DELIVERY

Clinical engineers have the expertise to facilitate a 
systems approach to health, where technological tools 
are needed to measure health system inputs and outputs. 
Tools for monitoring and reporting clinical parameters 
and laboratory results enhance the identification of early 
trends in large populations and can support better health 
and wellness.

The use of health technologies must be strategically 
guided, with coordination of local, national, and interna-
tional resources, optimal resource management, policies 
that guide technology-related outcomes,8 and plans for 
life cycle stages. To that end, a healthcare model is needed 
that integrates the delivery of care to improve both care 
outcomes and patient experience.9 Such integration re-
quires adequate knowledge of the technology life cycle, 
from innovation to application; academic programs that 
keep up with changes to point-of-care technologies; and 
participation in technological innovations such as robot-
ics, artificial intelligence, and implantables.

Clinical engineers have a foundational role in this 
integration, with their unique knowledge related to the 
management of health technology systems and validation 
at the point of care. In coordination with clinicians and 
other stakeholders, CEs are demonstrating the benefits 
of their inclusion as equal members of the healthcare 
delivery team, particularly during the global pandemic, 
at both the point of care and population health levels.10 

GLOBAL NEED
As the sales of global medical products are predicted 

to reach $658 billion by 2028,11 it is clear that, for optimal 
return on investment and sustainability, the implementa-
tion of such products should be managed and supported 
by trained professionals such as clinical engineers.

During the first 2 years of the covid-19 pandemic, 
WHO’s World Health Assembly focused on the need for 
intensive care ventilators (2020) and medical oxygen 
(2021).12 WHO has specifically recognized clinical engineers 
for optimally managing assets such as medical devices, 
personal protective equipment, oxygen, and digital health 
tools, particularly in low-resource settings.13 

Two CE organizations, the International Federation of 
Medical and Biological Engineering Chemical Engineering 
Division (IFMBE CED) and the Global Clinical Engineering 
Alliance (GCEA), grew tremendously during the pandemic 
with a surge in the need for their members’ expertise. 
In partnership with WHO, these organizations are now 
connected to colleagues in nearly 200 countries, sharing 
best practices and solutions to complex challenges.

The next step is to build the right systems capabilities 
for improving global healthcare delivery.

A CALL FOR ACTION
For clinical engineering to transition from localized 

point of care to population health, certain systems com-
petencies must be in place:
1.	 Education of the workforce to create greater collabo-

ration and resiliency. Collaborative interdisciplinary 
educational training14 will ensure the systems skills 
needed to maximize the benefits of health technolo-
gies. With demonstrated competencies and inter-
nationally coordinated professional credentialing, 
CEs will be prepared to be equal partners with the 
other members of a healthcare team, participating 
in new clinical roles and workflows to free physi-
cians and nurses for direct patient care.

2.	 National health technology policy to address prior-
ity national challenges. Pandemic-related impacts 
necessitated rapid implementation of national 
health technology policy in many countries.15 This 
and experiences with other disasters (e.g., floods, 
wildfires, earthquakes, power outages) clearly show 
the need for international coordination of new na-
tional guidelines to sustain access to, availability of, 
and the transfer of critical healthcare technology 
tools. Clinical engineers can play an important role 
in informing and implementing such policy.

https://ced.ifmbe.org/
https://www.globalcea.org/home?hsLang=en
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3.	 National and international alliances and partnerships 
to share expertise and lessons learned. Such alliances 
will coordinate meetings of healthcare stakehold-
ers (e.g., clinicians, administrators, and ministry of 
health personnel with clinical engineers) to examine 
areas of concern where CEs can make a difference. 
For example, the Global Clinical Engineering Alli-
ance has offered webinars, a virtual international 
congress, and a global CE summit to identify and 
rank common global challenges. Such alliances can 
help those in the health sector, industry, academia, 
and NGOs drive cost-effective and high-quality in-
novations in healthcare delivery, and manage the 
performance of the technology used at both point 
of care and in regional and global populations.

As healthcare delivery systems around the world in-
creasingly depend on technology for access to the best 
care, the expertise of clinical engineers in the use and 
management of this technology is critical for achieving 
best outcomes. For both point-of-care and population 
health, a systems approach can improve the delivery of 
health services through education, workforce collaboration, 
policy development, and partnerships. Clinical engineers 
are indispensable partners in achieving this mission. Just 
as Fiza was driven to overcome challenges, the approach 
described here shows a pathway to achieve the outcomes 
we all need.
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