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ABSTRACT

Background and Objective: Positron Emission Tomography (PET) images typically exhibit high noise levels and limited 
spatial resolution. This paper presents a comparative investigation of traditional PET image reconstruction methods, includ-
ing Filtered Back Projection (FBP), Algebraic Reconstruction Technique (ART), and Ordered Subset Expectation Maximization 
(OSEM), alongside hybrid approaches that incorporate deep learning techniques.

Methods: The deep learning approach employed in this work is based on Generative Adversarial Networks (GANs), a powerful 
framework well suited for inverse problems and image generation tasks such as PET reconstruction. This approach is tested 
on a publicly available dataset consisting of PET images stored in DICOM format. Performance is evaluated using two standard 
metrics: the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE).

Results: The results demonstrate that our proposed methods outperform existing approaches in terms of performance while 
requiring less reconstruction time. Quantitatively, the Peak Signal-to-Noise Ratio (PSNR) of the reconstructed images is approximately 
50 dB. Qualitatively, the observed high image quality supports these quantitative findings.

Conclusion: Our proposed hybrid method is highly effective for noisy PET images, enabling accurate reconstruction and pre-
serving pertinent information and regions of interest, thereby facilitating medical diagnosis.
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INTRODUCTION

A key field in contemporary medical imaging, nuclear medicine visualizes and examines physiological and pathological 
processes at the molecular level using low dosages of radioactive tracers—radiopharmaceuticals. Injected, ingested, 
or inhaled radiopharmaceuticals enter the body and emit gamma rays, detected by imaging tools such as gamma 
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cameras and positron emission tomography (PET) scanners. 
The obtained raw data provides vital information for 
diagnosing and tracking certain diseases through the 
spatial distribution of the radiotracer within tissues. 
However, converting this data into high-quality images 
suitable for clinical interpretation requires sophisticated 
reconstruction methods that minimize artefacts, reduce 
noise, and maintain anatomical accuracy. PET images are 
degraded and have a low signal-to-noise ratio due to short 
scan durations and low-dose radiotracers.1,2

Analytical and iterative techniques have traditionally 
dominated image reconstruction in nuclear medicine. 
One of the earliest and most frequently used methods, 
Filtered Back Projection (FBP), is quite sensitive to noise and 
experiences resolution loss despite employing mathemati-
cal filtering on projection data. Iterative reconstruction 
methods, such as the Algebraic Reconstruction Technique 
(ART) and Ordered Subsets Expectation Maximization 
(OSEM), were introduced to address these limitations by 
refining the reconstruction through multiple iterations. 
Although these techniques improve image quality and noise 
suppression, they remain computationally expensive and 
require careful parameter tuning to balance resolution 
and noise reduction.3

By introducing data-driven approaches capable of 
understanding complex visual patterns, Artificial Intelligence 
(AI), especially deep learning, has transformed medical 
image reconstruction by reducing noise, recovering fine 
structural features, and accelerating the reconstruction 
process. Convolutional Neural Networks (CNNs) and 
Generative Adversarial Networks (GANs), as examples 
of deep learning models, have demonstrated exceptional 
ability in improving image quality. Unlike conventional 
methods that rely on explicit mathematical models, deep 
learning–based solutions use vast datasets to derive optimal 
representations of medical images, making them highly 
adaptable to variations in data acquisition protocols and 
scanner characteristics.4

Apart from purely deep learning–based reconstruction 
techniques, hybrid approaches that combine artificial 
intelligence with traditional methodologies have emerged 
as promising alternatives. These hybrid methods deliver 

superior image fidelity, enhanced noise suppression, 
and reduced computational demands by leveraging 
the strengths of conventional algorithms—such as the 
robustness of iterative reconstruction—alongside the 
learning capabilities of neural networks. By integrating 
deep learning models into existing reconstruction systems, 
hybrid approaches offer a balanced solution that improves 
image quality while maintaining the interpretability and 
reliability of traditional methods.5,6

Ida Häggström et al. developed a deep learning network to 
address major challenges in Positron Emission Tomography 
(PET) image reconstruction.7 Their approach, DeepPET, 
directly and rapidly reconstructs high-quality, quantitative 
PET images from sinograms using a deep convolutional 
encoder-decoder network. They created a large dataset 
of over 291,000 reference images by randomly selecting 
parameters derived from a whole-body digital phantom 
and simulating actual PET scans, thereby producing noisy 
sinogram data to train, validate, and test DeepPET. The 
findings showed that DeepPET generates higher-quality 
images than traditional methods. Requiring significantly 
less time than conventional reconstruction techniques, 
the study concludes that the end-to-end encoder-decoder 
network architecture can effectively produce high-quality 
PET images.

This research compares hybrid reconstruction methods 
with conventional and deep learning–based algorithms 
for scintigraphy imaging. We evaluate the effectiveness 
of hybrid approaches that integrate deep learning with 
traditional methods, compared to single deep learning 
models and analytical or iterative techniques. Key param-
eters such as noise suppression, resolution retention, 
computational efficiency, and clinical interpretability 
will guide the assessment of model performance. The 
objective is to determine whether hybrid methodologies 
can bridge the gap between traditional techniques and 
AI-driven reconstruction, thereby yielding more precise 
and reliable medical imaging solutions. The concluding 
section of this study will present our findings, highlighting 
the advantages and disadvantages of each strategy while 
exploring prospective avenues for AI-assisted reconstruction 
in nuclear medicine.
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MATERIALS AND METHODS

This section details the database, hardware, software, 
and methods employed in this study.

Database

The database used in this study consists of 80,000 
PET images in DICOM format, with a resolution of 128 
× 128 pixels, sourced from the Parkinson’s Progression 
Markers Initiative website.8 For training, validation, and 
testing purposes, the dataset was divided into proportions 
of 70%, 15%, and 15%, respectively.

The database was converted into sinograms. We applied 
our GAN model to 70% of the training sinograms to capture 
sinogram characteristics, and then used the remaining 
data to validate and test the model.

Hardware Reconstruction

Reconstructions were performed on a high-performance 
workstation equipped with an Intel Core i9-13900K processor 
clocked at 5.8 GHz, providing 24 cores for maximum 
computational parallelism. Graphical processing power 
was supplied by an NVIDIA GeForce RTX 4090 graphics 
card with 24 GB of GDDR6X memory, which was essential 
for accelerating intensive deep learning operations and 
complex reconstructions. The workstation also included 
128 GB of DDR5 RAM at 6,000 MHz, ensuring smooth 
handling of large datasets. Storage was managed by a 2 TB 
PCIe Gen4 NVMe SSD, enabling extremely fast data loading 
and writing times. This advanced hardware configuration 
was critical for minimizing reconstruction times and 
supporting the use of sophisticated deep learning models.

Software Implementation

Our reconstruction framework was developed using 
Python 3.8, leveraging a comprehensive set of libraries 
for deep learning and image processing. The core of the 
deep learning model, a Generative Adversarial Network 
(GAN), was built with PyTorch 1.x, enabling efficient training 
and deployment on GPU hardware. Data handling and 
numerical operations were managed using NumPy, while 
performance evaluation utilized torchmetrics. Image 
loading, preprocessing, and traditional reconstruction 
methods, such as the Radon transform and ART (Algebraic 

Reconstruction Technique), were implemented using 
scikit-image (skimage) and OpenCV (cv2). Visualization 
of results was performed with Matplotlib, and the training 
process was monitored using tqdm for progress bar 
visualization. This robust software stack enabled seamless 
integration of advanced deep learning techniques with 
established classical reconstruction algorithms9.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), introduced 
in the early 2010s, are a class of machine learning models 
comprising two opposing convolutional neural networks: 
the generator and the discriminator. The generator aims 
to synthesize sinograms from the input database, striving 
to produce outputs that closely resemble authentic 
sinograms. The discriminator evaluates input sinograms 
to determine their authenticity, distinguishing between 
real and generated data. The GANs equation is presented 
in Equation (1).

( ) ( )( ) ( )( )( ), log log 1G D x zMin Max f D G E D x E D G z  = + −     (1)

In this context, Ex denotes the expected value across 
all real sinograms; D(x) represents the Discriminator’s 
probability estimate that input x is real; G(z) represents the 
output of the Generator for noise z; D(G(z)) represents the 
Discriminator’s probability estimate for the authenticity 
of the generated sinograms; and Ez indicates the expected 
value across the Generator’s entire random input space.

The architecture consists of two main components: 
a generator (G), designed to create images intended to 
fool the discriminator, and a discriminator (D), designed 
to distinguish between real and synthetically generated 
images. The generator G defines a probability distribution 
representing the distribution of its produced samples G(z) 
given a latent variable distribution z–pz. The primary goal 
of a GAN is to train the generator’s distribution to closely 
approximate the actual data distribution. A shared loss 
function for both D and G enables a GAN to be optimized 
through simultaneous minimization and maximization.10

After applying our GAN model, we obtain enhanced 
sinograms, which are then reconstructed into images using 
traditional reconstruction methods such as Filtered Back 
Projection (FBP), Algebraic Reconstruction Technique 



Asma and Amel: Evaluating Hybrid Deep Learning and Traditional Methods for PET Image Reconstruction

J Global Clinical Engineering Vol.7 Issue 4: 2025	 8

(ART), and Ordered Subset Expectation Maximization 
(OSEM), as presented in the following sections.

Filtered Back Projection (FBP)

Filtered Back Projection (FBP) is a fundamental and 
computationally straightforward analytical technique 
for tomographic image reconstruction. The method 
typically involves applying a ramp filter and windowing 
to attenuate noise, correcting for blurring by filtering the 
projection data (sinogram) in the frequency domain. The 
reconstructed image is then generated by back-projecting 
these filtered projections onto the image grid.11

( ) ( ) ( ) ( ) ( )
0

, [ , * ]r xcos ysinf x y P r h r d
π

θ θθ θ= += ∫                 (2)

The FBP equation reconstructs the image value f(x,y) 
at each point from the projection data P(θ,r), also known 
as the sinogram. This process involves filtering each 
projection with a kernel h(r) (or ∣ω∣ in the frequency 
domain) and then summing these filtered contributions 
over all angles (integrating over θ).

Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) is an 
early iterative method for image reconstruction. Starting 
with an initial image estimate, ART iteratively updates pixel 
values along projection rays to minimize the difference 
between the observed and projected data.12
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In the linear system used by ART for reconstruction, 
pi represents the ith projection measurement, fj denotes 
the value of the jth pixel, and wij is a weight indicating 
the contribution of the jth pixel to the ith measurement, 
such as the extent of intersection between projection ray 
i and pixel j.

Ordered Subset Expectation Maximization (OSEM)

Primarily used in Positron Emission Tomography 
(PET) and Single-Photon Emission Computed Tomog-
raphy (SPECT) emission tomography (PET, SPECT), 
Ordered Subsets Expectation Maximization (OSEM) is an 

accelerated iterative statistical reconstruction method. 
OSEM, a faster variant of the Expectation Maximization 
(EM) algorithm, processes ordered subsets of projection 
data in each iteration to improve convergence speed, 
updating the image estimate based on these subsets.13
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This equation shows how the current estimate 
( )k
jf  is 

adjusted based on the ratio of measured projections gi to 
estimated projections, weighted by the system matrix aij 
for the current subset Sm.

The quality of final images was evaluated using Mean 
Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR).

Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a commonly used 
and straightforward metric that quantifies the difference 
between the test image and the reconstructed image. It 
is defined by the following equation:14

( ) ( )( )2
1 1

1 , ,M N
i jMSE f i j f i j

N M = = ′= −
⋅ ∑ ∑

       
(5)

where f(i,j) is the original image; f ’(i,j) is the degraded 
image; M and N refer to the number of rows and columns, 
respectively.

Peak Signal to Noise Ratio (PSNR)

The performance of the proposed method is evaluated 
using the Peak Signal-to-Noise Ratio (PSNR) and the Mean 
Squared Error (MSE). The perceptual quality metric, PSNR, 
is calculated by comparing the reconstructed image with 
the original image.15 The equations used to assess these 
performance measures are:

( )( )2
1010log ,

max
I i j

PSNR
MSE

=
	        	        

(6)

where I(i,j) is the original image; I(i,j)max is the highest 
intensity value, I is the original image; and MSE is the 
mean squared error. 
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The next section details and shows a schematic 
illustration of our proposed method.

Proposed Method

A key obstacle in applying supervised learning to PET 
imaging is the difficulty of acquiring a large collection of 
high-quality scans in clinical practice, which is why the 
process begins with an input sinogram derived from an 
image. 

The training dataset, representing 70% of the total 
database, was first converted into sinograms using the 
Radon transform. A GAN architecture, based on a deep 
convolutional structure, was applied to these sinograms 
for enhancement. This architecture consists of a Generator 
and a Discriminator. The Discriminator processes the 
sinograms to distinguish between real and generated 
data, outputting a probability score through a Sigmoid 
activation function in its final layer. The training of both 
networks involved optimizing their parameters using the 
Adam algorithm, a widely used adaptive method known for 
its efficiency and robustness. Training was conducted for 
100 epochs, allowing the networks to learn and converge 
over the entire dataset multiple times.

The Generator consists of six two-dimensional 
convolutional layers with a fixed kernel size and padding 
to preserve the spatial dimensions of the input throughout 
the network. The input to the Generator is a tensor of 
dimension (N, 1, H, W). This input is processed by the 
first convolutional layer (conv1), followed by Instance 
Normalization and a Parametric Rectified Linear Unit 
(PReLU) activation function, which provides greater 
flexibility compared to the standard Rectified Linear Unit 
(ReLU). The subsequent layers follow a similar structure 
up to the residual connection, where the output of the 
last convolution is added to the original input of the 
Generator. This residual connection facilitates training 
and can enhance the quality of generated sinograms by 
preserving low-level information.

After completing the training phase, the performance 
of the trained GAN model was evaluated on a separate 
test dataset. The test images were first converted into 
sinograms and then enhanced using the GAN to achieve 
improved quality and reduced noise.

The enhanced sinogram is then input into traditional 
reconstruction algorithms: Filtered Back Projection (FBP), 
Algebraic Reconstruction Technique (ART), and Ordered 
Subsets Expectation Maximization (OSEM). The resulting 
reconstructed images are quantitatively evaluated using 
Peak Signal-to-Noise Ratio (PSNR) and Mean Squared 
Error (MSE) metrics to assess the effectiveness of GAN-
based sinogram enhancement in improving reconstruction 
quality across different algorithms. Figure 1 illustrates 
the proposed method. 

The next section details both the numerical and 
descriptive findings obtained using the methods men-
tioned previously.

RESULTS

This section presents the quantitative and qualitative 
results obtained from our proposed GAN model prior to 
reconstruction using the three traditional methods.

Three sinograms were selected to evaluate the proposed GAN 
model. Figures 2 and 3 show the reconstructed images, and Table 1 
presents the comparison results obtained using the evaluation metrics.

FIGURE 1. Schematic illustration of the hybrid deep learning 
method for PET data: They are separated into three sections; 
denoising of sinogram using GAN, reconstruction methods (FBP, 
ART, and OSEM), and evaluation with MSE and PSNR.
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Figure 2 shows the datasets reconstructed using the 
three proposed hybrid methods. The GAN was applied to 
the sinogram of each image to enhance quality and reduce 
artifacts. These enhanced sinograms were then recon-
structed using traditional methods and evaluated using 
PSNR and MSE metrics. Three distinct objects, differing in 
size, shape, and density, were selected to assess the range 
of results achievable with our proposed methodology. The 
statistical results are presented in Table 1.

Table 1 presents the PSNR and MSE values, along with 
the reconstruction time for each approach. The selection 
of these metrics is motivated by several factors. In PET 
imaging, accurate measurement of tracer uptake is crucial; 
MSE allows assessment of how well the reconstruction 
method preserves quantitative information within the 
images. Considering the inherently noisy nature of PET 
images, PSNR evaluates the effectiveness of the reconstruction 
technique in suppressing noise while maintaining the 
radiotracer distribution signal.

FIGURE 2. Schematic illustration of the hybrid deep learning 
method for PET data. The process is divided into three sections: 
denoising of the sinogram using GAN, reconstruction methods 
(FBP: column A, ART: column B, and OSEM: column C), and 
evaluation with MSE and PSNR.

TABLE 1. Values of PSNR, MSE, and reconstruction time for the 
proposed GAN model and the DeepPET model.

EVALUATION

PSNR MSE TIME(S)

GAN-FBP
53.1906
54.2026
53.1381

1.82e-5

1.77e-5

1.85e-5

3.45
3.48
3.44

GAN-ART
52.1756
51.5336
52.9978

1.43e-5

1.47e-5

1.52e-5

5.56
5.76
5.88

GAN-OSEM
55.4581
55.7497
55.8165

1.44e-5

1.31e-5

1.49e-5

9.69
9.89
9.08

DeepPET-FBP
51.7503
53.9884
54.5005

1.53e-5

1.49e-5

1.52e-5

10.08
9.75
10.1

DeepPET-ART
52.2001

54.62
54.3875

1.52e-5

1.48e-5

1.49e-5

11
11.5

11.31

DeepPET-OSEM
53.3665
54.004

55.1297

1.51e-5

1.5e-5

1.47e-5

11.33
12.5
12.2

FIGURE 3. The variation of PSNR (a) and MSE (b) across 12,000 
test images for GAN-FBP, GAN-ART, and GAN-OSEM.
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To validate our proposed GAN model, we compare it 
with the DeepPET model and obtain the results in Figure 4. 

Figures 4 and 5 display the same brain scan reconstruc-
tions using different methods: FBP, ART, and OSEM. Each 
method presents both a full image and a zoomed-in view 
of a specific region, allowing for visual comparison of 
reconstruction quality. The results highlight the differences 
between DeepPET and the proposed method in terms of 
reconstructed image quality.

DISCUSSION

The performance of the proposed deep learning–en-
hanced reconstruction methods—GAN-OSEM, GAN-FBP, 
and GAN-ART—was comprehensively evaluated on a 
dataset of 12,000 images using PSNR and MSE as the 
primary metrics.

For the GAN-OSEM approach, PSNR values remained 
consistently high, ranging from approximately 54.2 dB 
to 55.8 dB, with most values clustered around 55.0 dB, 
indicating excellent overall image quality. Correspond-
ingly, MSE values for GAN-OSEM were notably low, gener-
ally fluctuating between 1.25 × 10⁻⁵ and 1.55 × 10⁻⁵. The 
relatively narrow spread for both metrics suggests robust 
and stable performance across the entire dataset, with 
minimal extreme variations.

For GAN-FBP, PSNR values were generally lower than 
those observed with GAN-OSEM, ranging from approximately 
53.5 dB to 55.25 dB, with a mean around 54.0 dB. MSE 
values for GAN-FBP were higher, typically between 1.65 × 
10⁻⁵ and 1.95 × 10⁻⁵, indicating a greater average reconstruc-
tion error compared to GAN-OSEM. While performance 
remained strong, the slightly wider spread of data points 
suggests a marginally less consistent output quality.

For the GAN-ART method, PSNR values showed the 
lowest range among the three approaches, varying 
approximately between 52.0 dB and 55.0 dB, with most 
values concentrated around 53.0–53.5 dB. MSE values 
for GAN-ART were also the highest, typically ranging 
from 1.2 × 10⁻⁵ (with this lower bound appearing as an 
outlier, as most values exceeded 1.3 × 10⁻⁵) to 2.0 × 10⁻⁵, 
indicating the largest reconstruction errors. Despite 
having the lowest mean PSNR and highest mean MSE, 
the visual distribution for GAN-ART appeared relatively 
stable, although at a lower performance level compared 
to the other two methods.

Overall, the visual analysis of these 12,000 data points 
demonstrates that GAN-OSEM consistently achieves the 
highest PSNR and lowest MSE, indicating superior image 
reconstruction quality and precision. GAN-FBP follows, 
offering good performance but with slightly higher errors, 
while GAN-ART, although still effective, consistently 
produces the lowest PSNR and highest MSE among the 

FIGURE 4. Examples of denoised PET images using emerging 
methods. Each column (A) to (C) shows the same PET slice. 
From left to right, the reconstructed results are from GAN-FBP, 
GAN-ART, and GAN-OSEM.

FIGURE 5. Examples of denoised PET images using the DeepPET 
method. Each column (A) to (C) shows the same PET slice. From 
left to right, the reconstructed results are from DeepPET-FBP, 
DeepPET-ART, and DeepPET-OSEM.



Asma and Amel: Evaluating Hybrid Deep Learning and Traditional Methods for PET Image Reconstruction

J Global Clinical Engineering Vol.7 Issue 4: 2025	 12

three hybrid approaches. The observed fluctuations 
across all 12,000 images for each method underscore the 
importance of evaluating performance over large datasets 
to capture the full range of metric variation.

The GAN-FBP method we propose is computationally 
efficient compared to iterative techniques. It offers a quick 
reconstruction process, is easy to implement, and tends to 
be robust and stable. Our technique provides satisfactory 
results even with noisy data, making it suitable for situ-
ations where noise is not a major concern. In situations 
where rapid image reconstruction is crucial, GAN-FBP is 
often the preferred choice. 

The distinguishing characteristic of the GAN-ART 
algorithm lies in its adaptability, as it is capable of 
processing several forms of tomographic data. Our 
approach incrementally enhances the solution with each 
iteration, resulting in improved convergence. GAN-ART can 
generate scenarios to fill in missing projections or views 
in the data, allowing for more accurate reconstructions. 
Additionally, this method is flexible and can be applied to 
various imaging system geometries and configurations, 
resulting in faster reconstructions, particularly for large 
datasets. 

The GAN-OSEM technique we employ utilizes code to 
implement the OSEM denoising algorithm for PET image 
reconstruction based on deep learning enhancement. 
This process is carried out iteratively over subsets, with 
the image being updated based on the ratio of measured 
and estimated sinograms.

The DeepPET model by Ida Häggström et al.,7 applied 
to the sinogram and then reconstructed using traditional 
techniques, shows remarkable results in terms of noise 
and blur reduction but remains limited by the data in 
our database, which are voluminous, as it takes longer to 
reconstruct compared to our proposed methods. Figures 4 
and 5 illustrate the differences between the four methods 
studied in this article and perceptually validate our results.

The evaluation of the reconstruction quality is performed 
using PSNR and MSE metrics. This method yields superior 
outcomes due to its iterative nature, which facilitates 
incremental enhancement of image quality and results in 
more precise reconstruction, especially in situations with 

low data counts. GAN-OSEM is proficient in addressing 
diverse systematic errors and artifacts encountered in 
PET imaging, including attenuation, scatter, and random 
events. The GAN-OSEM algorithm iteratively rectifies 
these effects, thereby enhancing image quality.

Traditional direct methods are unable to recover all 
pertinent information during the transformation of the 
sinogram into images, consequently leading to a loss of 
object details, contour definition, and regions of interest. 
This results in a significantly reduced signal-to-noise ratio. 
In contrast, these hybrid methods incorporating deep learn-
ing enable the generation of missing information, thereby 
ensuring good quality in the reconstructed images. The 
obtained results confirm that the hybrid approach is more 
effective than traditional methods, demonstrating a higher 
signal-to-noise ratio across all three proposed methods. 
Notably, GAN-OSEM clearly outperforms the other two. It 
is important to acknowledge that our proposed algorithm 
possesses limitations, such as the necessity for very large 
quantities of training data to effectively distinguish between 
generated and real sinograms. Despite its adaptability to 
various object types and shapes and its robustness, our 
method still requires further improvement to accommodate 
images from other modalities, aiming toward a more 
generalized algorithm. Another limitation of this study is 
that the validation only used an online database. In future 
studies, we plan to validate the results using a regional 
real-data database. We will also work on generalizing 
our algorithm to other modalities, such as MRI and CT, 
to better adapt the denoising and reconstruction method 
for large amounts of data.16

CONCLUSION

We conducted a comparative study for PET image 
denoising and reconstruction using deep learning with 
traditional methods, which demonstrates that the hybrid 
GAN-OSEM method yields qualitatively and quantitatively 
promising results, exhibiting reduced reconstruction time 
compared to traditional approaches and minimal noise 
and blurring in the reconstructed images. This methodology 
proves efficacious in the context of voluminous and noisy 
DICOM images, enabling effective reconstruction and the 
preservation of pertinent information and regions of 
interest, thereby facilitating medical diagnosis. The use 
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of deep learning is expected to be crucial in enhancing the 
performance of PET imaging as well as image processing.17

While our evaluation has demonstrated the robustness 
of the algorithm on a large set of clinical data, a more 
in-depth characterization of its intrinsic performance in 
terms of spatial resolution and contrast could be obtained 
through complementary studies. In this regard, the use 
of phantom images, such as the Jaszczak phantom, would 
be relevant for a controlled analysis of reconstruction 
capabilities. Furthermore, the evaluation of the Modulation 
Transfer Function (MTF) is envisioned to objectively 
quantify the resolution of the reconstructed image and 
will constitute a key direction for our future work.
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