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ABSTRACT

Background and Objective: Positron Emission Tomography (PET) images typically exhibit high noise levels and limited
spatial resolution. This paper presents a comparative investigation of traditional PET image reconstruction methods, includ-
ing Filtered Back Projection (FBP), Algebraic Reconstruction Technique (ART), and Ordered Subset Expectation Maximization
(OSEM), alongside hybrid approaches that incorporate deep learning techniques.

Methods: The deep learning approach employed in this work is based on Generative Adversarial Networks (GANs), a powerful
framework well suited for inverse problems and image generation tasks such as PET reconstruction. This approach is tested
on a publicly available dataset consisting of PET images stored in DICOM format. Performance is evaluated using two standard
metrics: the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE).

Results: The results demonstrate that our proposed methods outperform existing approaches in terms of performance while
requiring less reconstruction time. Quantitatively, the Peak Signal-to-Noise Ratio (PSNR) of the reconstructed images is approximately
50 dB. Qualitatively, the observed high image quality supports these quantitative findings.

Conclusion: Our proposed hybrid method is highly effective for noisy PET images, enabling accurate reconstruction and pre-
serving pertinent information and regions of interest, thereby facilitating medical diagnosis.

Keywords—Positron emission tomography, Deep learning, Generative adversarial networks, Image reconstruction, Evaluation.
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INTRODUCTION

Akey field in contemporary medical imaging, nuclear medicine visualizes and examines physiological and pathological
processes at the molecular level using low dosages of radioactive tracers—radiopharmaceuticals. Injected, ingested,
or inhaled radiopharmaceuticals enter the body and emit gamma rays, detected by imaging tools such as gamma
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cameras and positron emission tomography (PET) scanners.
The obtained raw data provides vital information for
diagnosing and tracking certain diseases through the
spatial distribution of the radiotracer within tissues.
However, converting this data into high-quality images
suitable for clinical interpretation requires sophisticated
reconstruction methods that minimize artefacts, reduce
noise, and maintain anatomical accuracy. PET images are
degraded and have a low signal-to-noise ratio due to short
scan durations and low-dose radiotracers."

Analytical and iterative techniques have traditionally
dominated image reconstruction in nuclear medicine.
One of the earliest and most frequently used methods,
Filtered Back Projection (FBP), is quite sensitive to noise and
experiences resolution loss despite employing mathemati-
cal filtering on projection data. Iterative reconstruction
methods, such as the Algebraic Reconstruction Technique
(ART) and Ordered Subsets Expectation Maximization
(OSEM), were introduced to address these limitations by
refining the reconstruction through multiple iterations.
Although these techniques improve image quality and noise
suppression, they remain computationally expensive and
require careful parameter tuning to balance resolution
and noise reduction.?

By introducing data-driven approaches capable of
understanding complex visual patterns, Artificial Intelligence
(AD), especially deep learning, has transformed medical
image reconstruction by reducing noise, recovering fine
structural features, and accelerating the reconstruction
process. Convolutional Neural Networks (CNNs) and
Generative Adversarial Networks (GANs), as examples
of deep learning models, have demonstrated exceptional
ability in improving image quality. Unlike conventional
methods that rely on explicit mathematical models, deep
learning-based solutions use vast datasets to derive optimal
representations of medical images, making them highly
adaptable to variations in data acquisition protocols and
scanner characteristics.*

Apart from purely deep learning-based reconstruction
techniques, hybrid approaches that combine artificial
intelligence with traditional methodologies have emerged
as promising alternatives. These hybrid methods deliver
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superior image fidelity, enhanced noise suppression,
and reduced computational demands by leveraging
the strengths of conventional algorithms—such as the
robustness of iterative reconstruction—alongside the
learning capabilities of neural networks. By integrating
deep learning models into existing reconstruction systems,
hybrid approaches offer a balanced solution that improves
image quality while maintaining the interpretability and
reliability of traditional methods.>®

Ida Haggstrom et al. developed a deep learning network to
address major challenges in Positron Emission Tomography
(PET) image reconstruction.” Their approach, DeepPET,
directly and rapidly reconstructs high-quality, quantitative
PET images from sinograms using a deep convolutional
encoder-decoder network. They created a large dataset
of over 291,000 reference images by randomly selecting
parameters derived from a whole-body digital phantom
and simulating actual PET scans, thereby producing noisy
sinogram data to train, validate, and test DeepPET. The
findings showed that DeepPET generates higher-quality
images than traditional methods. Requiring significantly
less time than conventional reconstruction techniques,
the study concludes that the end-to-end encoder-decoder
network architecture can effectively produce high-quality
PET images.

This research compares hybrid reconstruction methods
with conventional and deep learning-based algorithms
for scintigraphy imaging. We evaluate the effectiveness
of hybrid approaches that integrate deep learning with
traditional methods, compared to single deep learning
models and analytical or iterative techniques. Key param-
eters such as noise suppression, resolution retention,
computational efficiency, and clinical interpretability
will guide the assessment of model performance. The
objective is to determine whether hybrid methodologies
can bridge the gap between traditional techniques and
Al-driven reconstruction, thereby yielding more precise
and reliable medical imaging solutions. The concluding
section of this study will present our findings, highlighting
the advantages and disadvantages of each strategy while
exploring prospective avenues for Al-assisted reconstruction
in nuclear medicine.
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MATERIALS AND METHODS

This section details the database, hardware, software,
and methods employed in this study.

Database

The database used in this study consists of 80,000
PET images in DICOM format, with a resolution of 128
x 128 pixels, sourced from the Parkinson’s Progression
Markers Initiative website.® For training, validation, and
testing purposes, the dataset was divided into proportions
of 70%, 15%, and 15%, respectively.

The database was converted into sinograms. We applied
our GAN model to 70% of the training sinograms to capture
sinogram characteristics, and then used the remaining
data to validate and test the model.

Hardware Reconstruction

Reconstructions were performed on a high-performance
workstation equipped with an Intel Core i9-13900K processor
clocked at 5.8 GHz, providing 24 cores for maximum
computational parallelism. Graphical processing power
was supplied by an NVIDIA GeForce RTX 4090 graphics
card with 24 GB of GDDR6X memory, which was essential
for accelerating intensive deep learning operations and
complex reconstructions. The workstation also included
128 GB of DDR5 RAM at 6,000 MHz, ensuring smooth
handling of large datasets. Storage was managed by a 2 TB
PCle Gen4 NVMe SSD, enabling extremely fast data loading
and writing times. This advanced hardware configuration
was critical for minimizing reconstruction times and
supporting the use of sophisticated deep learning models.

Software Implementation

Our reconstruction framework was developed using
Python 3.8, leveraging a comprehensive set of libraries
for deep learning and image processing. The core of the
deep learning model, a Generative Adversarial Network
(GAN), was built with PyTorch 1.x, enabling efficient training
and deployment on GPU hardware. Data handling and
numerical operations were managed using NumPy, while
performance evaluation utilized torchmetrics. Image
loading, preprocessing, and traditional reconstruction
methods, such as the Radon transform and ART (Algebraic

Reconstruction Technique), were implemented using
scikit-image (skimage) and OpenCV (cv2). Visualization
of results was performed with Matplotlib, and the training
process was monitored using tqdm for progress bar
visualization. This robust software stack enabled seamless
integration of advanced deep learning techniques with
established classical reconstruction algorithms®.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), introduced
in the early 2010s, are a class of machine learning models
comprising two opposing convolutional neural networks:
the generator and the discriminator. The generator aims
to synthesize sinograms from the input database, striving
to produce outputs that closely resemble authentic
sinograms. The discriminator evaluates input sinograms
to determine their authenticity, distinguishing between
real and generated data. The GANs equation is presented
in Equation (1).

MingMax, f (D,G) = E, [ log(D(x)) ]+ E.[ log(1- D(G(2))) | (1)

In this context, E, denotes the expected value across
all real sinograms; D, represents the Discriminator’s
probability estimate that input x is real; G, represents the
output of the Generator for noise z; D(G,)) represents the
Discriminator’s probability estimate for the authenticity
of the generated sinograms; and E, indicates the expected
value across the Generator’s entire random input space.

The architecture consists of two main components:
a generator (G), designed to create images intended to
fool the discriminator, and a discriminator (D), designed
to distinguish between real and synthetically generated
images. The generator G defines a probability distribution
representing the distribution of its produced samples G,
given a latent variable distribution z-pz. The primary goal
ofa GAN is to train the generator’s distribution to closely
approximate the actual data distribution. A shared loss
function for both D and G enables a GAN to be optimized
through simultaneous minimization and maximization.°

After applying our GAN model, we obtain enhanced
sinograms, which are then reconstructed into images using
traditional reconstruction methods such as Filtered Back
Projection (FBP), Algebraic Reconstruction Technique

J Global Clinical Engineering Vol.7 Issue 4 2025



Asma and Amel: Evaluating Hybrid Deep Learning and Traditional Methods for PET Image Reconstruction

(ART), and Ordered Subset Expectation Maximization
(OSEM), as presented in the following sections.

Filtered Back Projection (FBP)

Filtered Back Projection (FBP) is a fundamental and
computationally straightforward analytical technique
for tomographic image reconstruction. The method
typically involves applying a ramp filter and windowing
to attenuate noise, correcting for blurring by filtering the
projection data (sinogram) in the frequency domain. The
reconstructed image is then generated by back-projecting
these filtered projections onto the image grid.*

f(an’) = I[P(H,r) * h(r)]r:xco.v(€)+ysin(9)de (2)

The FBP equation reconstructs the image value f{x,y)
at each point from the projection data P(6,r), also known
as the sinogram. This process involves filtering each
projection with a kernel h(r) (or |wl in the frequency
domain) and then summing these filtered contributions
over all angles (integrating over 9).

Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) is an
early iterative method for image reconstruction. Starting
with an initial image estimate, ART iteratively updates pixel
values along projection rays to minimize the difference
between the observed and projected data.!?

N
pi= wf fori=1,..M 3)
j=1

In the linear system used by ART for reconstruction,
pi represents the i projection measurement, f; denotes
the value of the j*" pixel, and w; is a weight indicating
the contribution of the j* pixel to the i"* measurement,
such as the extent of intersection between projection ray
i and pixel j.

Ordered Subset Expectation Maximization (OSEM)

Primarily used in Positron Emission Tomography
(PET) and Single-Photon Emission Computed Tomog-
raphy (SPECT) emission tomography (PET, SPECT),
Ordered Subsets Expectation Maximization (OSEM) is an
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accelerated iterative statistical reconstruction method.
OSEM, a faster variant of the Expectation Maximization
(EM) algorithm, processes ordered subsets of projection
data in each iteration to improve convergence speed,
updating the image estimate based on these subsets.™
(k+1) _ fj(k) .. 8g;
S i B @

This equation shows how the current estimate 7Y is
adjusted based on the ratio of measured projections g; to
estimated projections, weighted by the system matrix a;
for the current subset S,,..

The quality of final images was evaluated using Mean
Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR).

Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a commonly used
and straightforward metric that quantifies the difference
between the test image and the reconstructed image. It
is defined by the following equation:**

U o on (e g
MSE=——3 L3 L (F (1) -1 G (5)

where f{i,j) is the original image; f’(ij) is the degraded
image; M and N refer to the number of rows and columns,
respectively.

Peak Signal to Noise Ratio (PSNR)

The performance of the proposed method is evaluated
using the Peak Signal-to-Noise Ratio (PSNR) and the Mean
Squared Error (MSE). The perceptual quality metric, PSNR,
is calculated by comparing the reconstructed image with
the original image.'® The equations used to assess these
performance measures are:

- MSE

PSNR

(6)

where I(ij) is the original image; I(i,j),,.x is the highest
intensity value, I is the original image; and MSE is the
mean squared error.
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The next section details and shows a schematic
illustration of our proposed method.

Proposed Method

A key obstacle in applying supervised learning to PET
imaging is the difficulty of acquiring a large collection of
high-quality scans in clinical practice, which is why the
process begins with an input sinogram derived from an
image.

The training dataset, representing 70% of the total
database, was first converted into sinograms using the
Radon transform. A GAN architecture, based on a deep
convolutional structure, was applied to these sinograms
for enhancement. This architecture consists of a Generator
and a Discriminator. The Discriminator processes the
sinograms to distinguish between real and generated
data, outputting a probability score through a Sigmoid
activation function in its final layer. The training of both
networks involved optimizing their parameters using the
Adam algorithm, a widely used adaptive method known for
its efficiency and robustness. Training was conducted for
100 epochs, allowing the networks to learn and converge
over the entire dataset multiple times.

The Generator consists of six two-dimensional
convolutional layers with a fixed kernel size and padding
to preserve the spatial dimensions of the input throughout
the network. The input to the Generator is a tensor of
dimension (N, 1, H, W). This input is processed by the
first convolutional layer (conv1), followed by Instance
Normalization and a Parametric Rectified Linear Unit
(PReLU) activation function, which provides greater
flexibility compared to the standard Rectified Linear Unit
(ReLU). The subsequent layers follow a similar structure
up to the residual connection, where the output of the
last convolution is added to the original input of the
Generator. This residual connection facilitates training
and can enhance the quality of generated sinograms by
preserving low-level information.

After completing the training phase, the performance
of the trained GAN model was evaluated on a separate
test dataset. The test images were first converted into
sinograms and then enhanced using the GAN to achieve
improved quality and reduced noise.
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FIGURE 1. Schematic illustration of the hybrid deep learning
method for PET data: They are separated into three sections;

denoising of sinogram using GAN, reconstruction methods (FBP,
ART, and OSEM), and evaluation with MSE and PSNR.

The enhanced sinogram is then input into traditional
reconstruction algorithms: Filtered Back Projection (FBP),
Algebraic Reconstruction Technique (ART), and Ordered
Subsets Expectation Maximization (OSEM). The resulting
reconstructed images are quantitatively evaluated using
Peak Signal-to-Noise Ratio (PSNR) and Mean Squared
Error (MSE) metrics to assess the effectiveness of GAN-
based sinogram enhancement in improving reconstruction
quality across different algorithms. Figure 1 illustrates
the proposed method.

The next section details both the numerical and
descriptive findings obtained using the methods men-
tioned previously.

RESULTS

This section presents the quantitative and qualitative
results obtained from our proposed GAN model prior to
reconstruction using the three traditional methods.

Three sinograms were selected to evaluate the proposed GAN
model. Figures 2 and 3 show the reconstructed images, and Table 1
presents the comparison results obtained using the evaluation metrics.
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FIGURE 2. Schematic illustration of the hybrid deep learning
method for PET data. The process is divided into three sections:
denoising of the sinogram using GAN, reconstruction methods
(FBP: column A, ART: column B, and OSEM: column C), and
evaluation with MSE and PSNR.

TABLE 1. Values of PSNR, MSE, and reconstruction time for the
proposed GAN model and the DeepPET model.

EVALUATION
PSNR MSE TIME(S)
53.1906 1.82e° 3.45
GAN-FBP 54.2026 1.77e% 3.48
53.1381 1.85e° 3.44
52.1756 1.43e° 5.56
GAN-ART 51.5336 1.47¢° 5.76
52.9978 1.52¢° 5.88
55.4581 1.44e 9.69
GAN-OSEM 55.7497 1.31e® 9.89
55.8165 1.49¢® 9.08
51.7503 1.53e® 10.08
DeepPET-FBP 53.9884 1.49¢° 9.75
54.5005 1.52e® 10.1
52.2001 1.52¢° 11
DeepPET-ART 54.62 1.48e® 11.5
54.3875 1.49¢7 11.31
53.3665 1.51e® 11.33
DeepPET-OSEM 54.004 1.5¢7 12.5
55.1297 1.47e° 12.2

J Global Clinical Engineering Vol.7 Issue 4: 2025

Figure 2 shows the datasets reconstructed using the
three proposed hybrid methods. The GAN was applied to
the sinogram of each image to enhance quality and reduce
artifacts. These enhanced sinograms were then recon-
structed using traditional methods and evaluated using
PSNR and MSE metrics. Three distinct objects, differing in
size, shape, and density, were selected to assess the range
of results achievable with our proposed methodology. The
statistical results are presented in Table 1.

FIGURE 3. The variation of PSNR (a) and MSE (b) across 12,000
test images for GAN-FBP, GAN-ART, and GAN-OSEM.

Table 1 presents the PSNR and MSE values, along with
the reconstruction time for each approach. The selection
of these metrics is motivated by several factors. In PET
imaging, accurate measurement of tracer uptake is crucial;
MSE allows assessment of how well the reconstruction
method preserves quantitative information within the
images. Considering the inherently noisy nature of PET
images, PSNR evaluates the effectiveness of the reconstruction
technique in suppressing noise while maintaining the
radiotracer distribution signal.

10
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FIGURE 4. Examples of denoised PET images using emerging
methods. Each column (A) to (C) shows the same PET slice.
From left to right, the reconstructed results are from GAN-FBP,
GAN-ART, and GAN-OSEM.

FIGURE 5. Examples of denoised PET images using the DeepPET
method. Each column (A) to (C) shows the same PET slice. From
left to right, the reconstructed results are from DeepPET-FBP,
DeepPET-ART, and DeepPET-OSEM.

To validate our proposed GAN model, we compare it
with the DeepPET model and obtain the results in Figure 4.

Figures 4 and 5 display the same brain scan reconstruc-
tions using different methods: FBP, ART, and OSEM. Each
method presents both a full image and a zoomed-in view
of a specific region, allowing for visual comparison of
reconstruction quality. The results highlight the differences
between DeepPET and the proposed method in terms of
reconstructed image quality.

11

DISCUSSION

The performance of the proposed deep learning-en-
hanced reconstruction methods—GAN-OSEM, GAN-FBP,
and GAN-ART—was comprehensively evaluated on a
dataset of 12,000 images using PSNR and MSE as the
primary metrics.

For the GAN-OSEM approach, PSNR values remained
consistently high, ranging from approximately 54.2 dB
to 55.8 dB, with most values clustered around 55.0 dB,
indicating excellent overall image quality. Correspond-
ingly, MSE values for GAN-OSEM were notably low, gener-
ally fluctuating between 1.25 x 10" and 1.55 x 10 . The
relatively narrow spread for both metrics suggests robust
and stable performance across the entire dataset, with
minimal extreme variations.

For GAN-FBP, PSNR values were generally lower than
those observed with GAN-OSEM, ranging from approximately
53.5 dB to 55.25 dB, with a mean around 54.0 dB. MSE
values for GAN-FBP were higher, typically between 1.65 x
10°and 1.95x 10", indicating a greater average reconstruc-
tion error compared to GAN-OSEM. While performance
remained strong, the slightly wider spread of data points
suggests a marginally less consistent output quality.

For the GAN-ART method, PSNR values showed the
lowest range among the three approaches, varying
approximately between 52.0 dB and 55.0 dB, with most
values concentrated around 53.0-53.5 dB. MSE values
for GAN-ART were also the highest, typically ranging
from 1.2 x 10~ (with this lower bound appearing as an
outlier; as most values exceeded 1.3 x 107) to 2.0 x 10,
indicating the largest reconstruction errors. Despite
having the lowest mean PSNR and highest mean MSE,
the visual distribution for GAN-ART appeared relatively
stable, although at a lower performance level compared
to the other two methods.

Overall, the visual analysis of these 12,000 data points
demonstrates that GAN-OSEM consistently achieves the
highest PSNR and lowest MSE, indicating superior image
reconstruction quality and precision. GAN-FBP follows,
offering good performance but with slightly higher errors,
while GAN-ART, although still effective, consistently
produces the lowest PSNR and highest MSE among the

J Global Clinical Engineering Vol.7 Issue 4 2025
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three hybrid approaches. The observed fluctuations
across all 12,000 images for each method underscore the
importance of evaluating performance over large datasets
to capture the full range of metric variation.

The GAN-FBP method we propose is computationally
efficient compared to iterative techniques. It offers a quick
reconstruction process, is easy to implement, and tends to
be robust and stable. Our technique provides satisfactory
results even with noisy data, making it suitable for situ-
ations where noise is not a major concern. In situations
where rapid image reconstruction is crucial, GAN-FBP is
often the preferred choice.

The distinguishing characteristic of the GAN-ART
algorithm lies in its adaptability, as it is capable of
processing several forms of tomographic data. Our
approach incrementally enhances the solution with each
iteration, resulting in improved convergence. GAN-ART can
generate scenarios to fill in missing projections or views
in the data, allowing for more accurate reconstructions.
Additionally, this method is flexible and can be applied to
various imaging system geometries and configurations,
resulting in faster reconstructions, particularly for large
datasets.

The GAN-OSEM technique we employ utilizes code to
implement the OSEM denoising algorithm for PET image
reconstruction based on deep learning enhancement.
This process is carried out iteratively over subsets, with
the image being updated based on the ratio of measured
and estimated sinograms.

The DeepPET model by Ida Higgstrém et al.,” applied
to the sinogram and then reconstructed using traditional
techniques, shows remarkable results in terms of noise
and blur reduction but remains limited by the data in
our database, which are voluminous, as it takes longer to
reconstruct compared to our proposed methods. Figures 4
and 5 illustrate the differences between the four methods
studied in this article and perceptually validate our results.

The evaluation of the reconstruction quality is performed
using PSNR and MSE metrics. This method yields superior
outcomes due to its iterative nature, which facilitates
incremental enhancement of image quality and results in
more precise reconstruction, especially in situations with
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low data counts. GAN-OSEM is proficient in addressing
diverse systematic errors and artifacts encountered in
PET imaging, including attenuation, scatter, and random
events. The GAN-OSEM algorithm iteratively rectifies
these effects, thereby enhancing image quality.

Traditional direct methods are unable to recover all
pertinent information during the transformation of the
sinogram into images, consequently leading to a loss of
object details, contour definition, and regions of interest.
This results in a significantly reduced signal-to-noise ratio.
In contrast, these hybrid methods incorporating deep learn-
ing enable the generation of missing information, thereby
ensuring good quality in the reconstructed images. The
obtained results confirm that the hybrid approach is more
effective than traditional methods, demonstrating a higher
signal-to-noise ratio across all three proposed methods.
Notably, GAN-OSEM clearly outperforms the other two. It
is important to acknowledge that our proposed algorithm
possesses limitations, such as the necessity for very large
quantities of training data to effectively distinguish between
generated and real sinograms. Despite its adaptability to
various object types and shapes and its robustness, our
method still requires further improvement to accommodate
images from other modalities, aiming toward a more
generalized algorithm. Another limitation of this study is
that the validation only used an online database. In future
studies, we plan to validate the results using a regional
real-data database. We will also work on generalizing
our algorithm to other modalities, such as MRI and CT,
to better adapt the denoising and reconstruction method
for large amounts of data.'®

CONCLUSION

We conducted a comparative study for PET image
denoising and reconstruction using deep learning with
traditional methods, which demonstrates that the hybrid
GAN-OSEM method yields qualitatively and quantitatively
promising results, exhibiting reduced reconstruction time
compared to traditional approaches and minimal noise
and blurring in the reconstructed images. This methodology
proves efficacious in the context of voluminous and noisy
DICOM images, enabling effective reconstruction and the
preservation of pertinent information and regions of
interest, thereby facilitating medical diagnosis. The use
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of deep learning is expected to be crucial in enhancing the
performance of PET imaging as well as image processing.'’

While our evaluation has demonstrated the robustness
of the algorithm on a large set of clinical data, a more
in-depth characterization of its intrinsic performance in
terms of spatial resolution and contrast could be obtained
through complementary studies. In this regard, the use
of phantom images, such as the Jaszczak phantom, would
be relevant for a controlled analysis of reconstruction
capabilities. Furthermore, the evaluation of the Modulation
Transfer Function (MTF) is envisioned to objectively
quantify the resolution of the reconstructed image and
will constitute a key direction for our future work.
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