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ABSTRACT

In the ever-evolving tech industry, accurately assessing the software skills of developers is critical for effective workforce 
management. This study presents a machine learning approach to classify software development knowledge through source 
code analysis, focusing on Java-based technologies. A dataset of several source code files from multiple domains of software 
development was compiled from public repositories and labeled for classification. The high performance achieved in this study, 
by applying transfer learning, underlines the suitability of pre-trained CodeBERT models for the classification of software skills.

The methodology combined both non-pretrained neural networks and pretrained models to enhance classification accuracy. 
Results validate the feasibility of using machine learning to identify developers’ programming proficiencies, providing a foundation 
for sophisticated assessment tools. Future work aims to refine classification by incorporating functional task identification and 
commit-based analysis for a more comprehensive evaluation of coding skills. This study showcases the transformative potential 
of machine learning in streamlining developer assessments and advancing software engineering methodologies.

Keywords—Machine learning, Supervised learning, Multi-class classification, Neural network, Transfer learning, Source 
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INTRODUCTION

In today’s fast-paced tech industry, it has become 
increasingly difficult for companies to evaluate the skills 
of job applicants, leading to incorrect allocation of tasks 
and suboptimal hiring decisions. As a solution to this 
problem, this work utilized a machine learning-based 
model that can effectively classify the software knowledge 
of developers, by recognizing the different technologies 
and programming languages implemented by them, thus 
assisting companies in managing their workforce based 
on acquired skills. We collected data from various Java-
based software technologies and employed machine 
learning techniques to classify each source code file. A 
pre-trained CodeBERT1 model was implemented for the 
multi-class classification task and provided very high 
accuracy and precision. Based on previous work2, we 
implemented source code analysis by applying Natural 
Language Processing (NLP) techniques. The resulting 
model can be used as an effective tool for assessing the 
software knowledge of developers. 

METHODS

The methodology employed in this research consisted 
of several key steps to address the problem of multi-class 
classification of source code. The methodology pipeline 
is presented in Figure 1.  

Experimental Environment 

The experiments on source code classification were 
conducted using the Jupyter Notebook from Anaconda 
as a primary development environment. To accelerate 
the computations, we utilized NVIDIA’s CUDA platform 
to parallelize computations on the graphics card, which 
had a significant impact, when compared to a CPU-only 
approach. In terms of libraries and frameworks, several 

essential tools were used. TensorFlow, an open-source 
machine learning framework, played a central role in 
building and training the neural network models for source 
code classification. To evaluate the performance of the 
models, the scikit-learn (sklearn) library was selected, 
as it provided various utilities for data preprocessing, 
model evaluation, and performance metrics calculation. By 
utilizing sklearn, we could assess the accuracy, precision, 
recall, F1-score, and confusion matrix of our source code 
classification models, enabling a comprehensive analysis 
of their effectiveness. Lastly, to enhance the capabilities 
of the models, we utilized the CodeBERT model from the 
Transformers library. Transformers is a powerful library 
for NLP tasks, including source code understanding and 
processing.3 The pre-trained CodeBERT model allowed 
us to benefit from transfer learning4, as it had been pre-
trained on meaningful representations of source code 
from large scale code corpora.

Data selection  

The data selection process played a crucial role in obtain-
ing a representative dataset for source code classification. 
In the present research, we collected the necessary source 
code files from public GitHub repositories and selected 
multiple Java source code files that we considered repre-
sentative of each one of the following classes of software 
technology. We used a total of 183 files for the training 
and validation process. The six classes selected were: 1) 
JDBC (Java Database Connectivity), 2) File handling, 3) 
Exception handling, 4) Unit testing, 5) GUI (Graphical 
User Interface), 6) Miscellaneous. As inputs to the ML 
models entire Java files were used, however the problem 
and the models themselves can be generalized to snip-
pets of code, such as code commits during changes in a 
software repository. Thus, the files have been manually 
labeled regarding the programming Java concepts that 
they are mostly related to.

RESULTS 

For evaluating the pre-trained CodeBERT model’s 
performance in the multi-class classification of source 
code, we employed a set of appropriate evaluation met-
rics. These metrics include precision, recall, and F1 score. 
The model’s precision for the current task of identifying 

FIGURE 1. Mobile Virtual Patients App interface. 
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the technology of the source code files in JAVA, achieved 
91%, the model’s recall reached 90% and the F1 score 
achieved 90% (see Figure 2).

To get an insight into the model’s performance and 
behavior during the training process, we also provide 
a plot with the model’s training loss and validation loss 
metrics. The following plot serves as a diagnostic tool to 
assess the model’s learning dynamics and generalization 
ability (see Figure 3).

For a test case of 56 files from our dataset in which we 
performed multi-class classification, we created a confu-
sion matrix (see Figures 4 and 5). The dataset contained 
9 files from class “Exceptions”, 12 files from class “File 
Handling”, 10 files from class “GUI”, 10 files from class 
“JDBC”, 7 files from class “Unit Testing” and 8 files from 
class “Others”.

DISCUSSION 

In this paper, we have managed to introduce a meth-
odology for identifying software skills from source code 
using machine learning algorithms. Furthermore, this 
paper contributed to the field of software engineering 
by demonstrating the practical applicability of machine 
learning for software analysis and also to the understand-
ing of software skills identification by investigating the 
impact of different features on the accuracy of the clas-
sification model.

Limitations  

While this study demonstrates promising results and 
provides valuable insights into multi-class classification 
of source code, it is crucial to recognize the limitations 
stemming from the small dataset size, the context-specific 
evaluation metrics, and the potential constraints of trans-
fer learning with a pre-trained model. By acknowledging 
these limitations and considering them in the interpreta-
tion of the findings, future research can build upon this 
work and advance the development of more robust and 
versatile code classification systems.

Future Extensions  

Furthermore, beyond identifying different technologies 
in the code files, the next step could involve recognizing 
the specific tasks performed within the code. This would 
involve a more granular analysis to classify code based on 
the functionalities it serves, such as data manipulation, 
algorithm implementation, user interface development, 
or database management. By incorporating task identi-
fication, the classification system could provide deeper 
insights into developers’ programming skills and aptitudes 
in different areas. Additionally, a source code analysis in 
commits from repositories could be introduced as an as-
sessment tool. By integrating the commit analysis process, 
developers would gain valuable insights into the changes 

FIGURE 2. The evaluation metrics of the pre-trained Code-
BERT model.  

FIGURE 3. The model loss plot. 

FIGURE 4. Classification’s confusion matrix.

FIGURE 5. Matrix of TP, FP, FN,TN.
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introduced by the commits and obtain essential informa-
tion about the source code. Future work could involve 
exploring machine learning approaches to automatically 
classify the nature and impact of the commits based on 
the analysis of source code.

CONCLUSION 

Through the analysis, we have obtained valuable 
insights into the effectiveness of neural networks, the 
benefits of transfer learning using pre-trained models, 
and the potential for developing an assessment tool for 
developers. We exploited the power of transfer learning 
by employing the pre-trained CodeBERT model. This 
approach allowed us to capitalize on the vast amount of 
knowledge captured by the pre-trained model on a diverse 
range of source code tasks. By fine-tuning CodeBERT on 
our specific multi-class classification task, we were able 
to achieve impressive performance in terms of evaluation 
metrics, indicating the robustness and effectiveness of the 
transfer learning approach. The successful implementa-
tion of the multi-class classification task for recognizing 
different technologies in the Java programming language 
lays the foundation for the development of an assessment 
tool for developers.
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