
J Global Clinical Engineering Vol.6 Special Issue 6: 2024 74

Conference Paper

Software Skills Identification: A Multi-Class Classification on
Source Code Using Machine Learning

Dimitris Bamidis, Ilias Kalouptsoglou, Apostolos Ampatzoglou, Alexandros Chatzigeorgiou*

University of Macedonia, Thessaloniki, Greece.

* Corresponding Author Email: achat@uom.edu.gr

ABSTRACT

In the ever-evolving tech industry, accurately assessing the software skills of developers is critical for effective workforce
management. This study presents a machine learning approach to classify software development knowledge through source
code analysis, focusing on Java-based technologies. A dataset of several source code files from multiple domains of software
development was compiled from public repositories and labeled for classification. The high performance achieved in this study,
by applying transfer learning, underlines the suitability of pre-trained CodeBERT models for the classification of software skills.

The methodology combined both non-pretrained neural networks and pretrained models to enhance classification accuracy.
Results validate the feasibility of using machine learning to identify developers’ programming proficiencies, providing a foundation
for sophisticated assessment tools. Future work aims to refine classification by incorporating functional task identification and
commit-based analysis for a more comprehensive evaluation of coding skills. This study showcases the transformative potential
of machine learning in streamlining developer assessments and advancing software engineering methodologies.

Keywords—Machine learning, Supervised learning, Multi-class classification, Neural network, Transfer learning, Source
code analysis.

Copyright © 2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY): Creative Commons -
Attribution 4.0 International - CC BY 4.0. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright
owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduc-
tion is permitted which does not comply with these terms.

http://www.globalce.org
http://globalce.org
http://globalce.org
mailto:achat@uom.edu.gr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

75 J Global Clinical Engineering Vol.6 Special Issue 6: 2024

INTRODUCTION

In today’s fast-paced tech industry, it has become
increasingly difficult for companies to evaluate the skills
of job applicants, leading to incorrect allocation of tasks
and suboptimal hiring decisions. As a solution to this
problem, this work utilized a machine learning-based
model that can effectively classify the software knowledge
of developers, by recognizing the different technologies
and programming languages implemented by them, thus
assisting companies in managing their workforce based
on acquired skills. We collected data from various Java-
based software technologies and employed machine
learning techniques to classify each source code file. A
pre-trained CodeBERT1 model was implemented for the
multi-class classification task and provided very high
accuracy and precision. Based on previous work2, we
implemented source code analysis by applying Natural
Language Processing (NLP) techniques. The resulting
model can be used as an effective tool for assessing the
software knowledge of developers.

METHODS

The methodology employed in this research consisted
of several key steps to address the problem of multi-class
classification of source code. The methodology pipeline
is presented in Figure 1.

Experimental Environment

The experiments on source code classification were
conducted using the Jupyter Notebook from Anaconda
as a primary development environment. To accelerate
the computations, we utilized NVIDIA’s CUDA platform
to parallelize computations on the graphics card, which
had a significant impact, when compared to a CPU-only
approach. In terms of libraries and frameworks, several

essential tools were used. TensorFlow, an open-source
machine learning framework, played a central role in
building and training the neural network models for source
code classification. To evaluate the performance of the
models, the scikit-learn (sklearn) library was selected,
as it provided various utilities for data preprocessing,
model evaluation, and performance metrics calculation. By
utilizing sklearn, we could assess the accuracy, precision,
recall, F1-score, and confusion matrix of our source code
classification models, enabling a comprehensive analysis
of their effectiveness. Lastly, to enhance the capabilities
of the models, we utilized the CodeBERT model from the
Transformers library. Transformers is a powerful library
for NLP tasks, including source code understanding and
processing.3 The pre-trained CodeBERT model allowed
us to benefit from transfer learning4, as it had been pre-
trained on meaningful representations of source code
from large scale code corpora.

Data selection

The data selection process played a crucial role in obtain-
ing a representative dataset for source code classification.
In the present research, we collected the necessary source
code files from public GitHub repositories and selected
multiple Java source code files that we considered repre-
sentative of each one of the following classes of software
technology. We used a total of 183 files for the training
and validation process. The six classes selected were: 1)
JDBC (Java Database Connectivity), 2) File handling, 3)
Exception handling, 4) Unit testing, 5) GUI (Graphical
User Interface), 6) Miscellaneous. As inputs to the ML
models entire Java files were used, however the problem
and the models themselves can be generalized to snip-
pets of code, such as code commits during changes in a
software repository. Thus, the files have been manually
labeled regarding the programming Java concepts that
they are mostly related to.

RESULTS

For evaluating the pre-trained CodeBERT model’s
performance in the multi-class classification of source
code, we employed a set of appropriate evaluation met-
rics. These metrics include precision, recall, and F1 score.
The model’s precision for the current task of identifying

FIGURE 1. Mobile Virtual Patients App interface.

http://www.globalce.org
http://globalce.org
http://globalce.org

J Global Clinical Engineering Vol.6 Special Issue 6: 2024 76

the technology of the source code files in JAVA, achieved
91%, the model’s recall reached 90% and the F1 score
achieved 90% (see Figure 2).

To get an insight into the model’s performance and
behavior during the training process, we also provide
a plot with the model’s training loss and validation loss
metrics. The following plot serves as a diagnostic tool to
assess the model’s learning dynamics and generalization
ability (see Figure 3).

For a test case of 56 files from our dataset in which we
performed multi-class classification, we created a confu-
sion matrix (see Figures 4 and 5). The dataset contained
9 files from class “Exceptions”, 12 files from class “File
Handling”, 10 files from class “GUI”, 10 files from class
“JDBC”, 7 files from class “Unit Testing” and 8 files from
class “Others”.

DISCUSSION

In this paper, we have managed to introduce a meth-
odology for identifying software skills from source code
using machine learning algorithms. Furthermore, this
paper contributed to the field of software engineering
by demonstrating the practical applicability of machine
learning for software analysis and also to the understand-
ing of software skills identification by investigating the
impact of different features on the accuracy of the clas-
sification model.

Limitations

While this study demonstrates promising results and
provides valuable insights into multi-class classification
of source code, it is crucial to recognize the limitations
stemming from the small dataset size, the context-specific
evaluation metrics, and the potential constraints of trans-
fer learning with a pre-trained model. By acknowledging
these limitations and considering them in the interpreta-
tion of the findings, future research can build upon this
work and advance the development of more robust and
versatile code classification systems.

Future Extensions

Furthermore, beyond identifying different technologies
in the code files, the next step could involve recognizing
the specific tasks performed within the code. This would
involve a more granular analysis to classify code based on
the functionalities it serves, such as data manipulation,
algorithm implementation, user interface development,
or database management. By incorporating task identi-
fication, the classification system could provide deeper
insights into developers’ programming skills and aptitudes
in different areas. Additionally, a source code analysis in
commits from repositories could be introduced as an as-
sessment tool. By integrating the commit analysis process,
developers would gain valuable insights into the changes

FIGURE 2. The evaluation metrics of the pre-trained Code-
BERT model.

FIGURE 3. The model loss plot.

FIGURE 4. Classification’s confusion matrix.

FIGURE 5. Matrix of TP, FP, FN,TN.

http://www.globalce.org
http://globalce.org
http://globalce.org

77 J Global Clinical Engineering Vol.6 Special Issue 6: 2024

introduced by the commits and obtain essential informa-
tion about the source code. Future work could involve
exploring machine learning approaches to automatically
classify the nature and impact of the commits based on
the analysis of source code.

CONCLUSION

Through the analysis, we have obtained valuable
insights into the effectiveness of neural networks, the
benefits of transfer learning using pre-trained models,
and the potential for developing an assessment tool for
developers. We exploited the power of transfer learning
by employing the pre-trained CodeBERT model. This
approach allowed us to capitalize on the vast amount of
knowledge captured by the pre-trained model on a diverse
range of source code tasks. By fine-tuning CodeBERT on
our specific multi-class classification task, we were able
to achieve impressive performance in terms of evaluation
metrics, indicating the robustness and effectiveness of the
transfer learning approach. The successful implementa-
tion of the multi-class classification task for recognizing
different technologies in the Java programming language
lays the foundation for the development of an assessment
tool for developers.

REFERENCES

1. Feng, Z., Guo, D., Tang, D., et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In
Findings of the Association for Computational Linguistics:
EMNLP 2020, 16–20 November 2020, pp. 1536–1547;
Association for Computational Linguistics: Kerrville,
TX, United States. https://doi.org/10.18653/v1/2020.
findings-emnlp.139.

2. Kourtzanidis,S., Chatzigeorgiou, A., Ampatzoglou, A.
RepoSkillMiner: identifying software expertise from
GitHub repositories using natural language process-
ing. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE '20), Melbourne, Australia, 21–25 September
2020, pp. 1353–1357; Association for Computing
Machinery, New York, NY, United States. https://doi.
org/10.1145/3324884.3415305.

3. Zhang, K., Li, G., Jin, Z. What does Trans former learn
about source code? 2022, arXiv preprint. https://doi.
org/10.48550/arXiv.2207.08466.

4. Sharma, T., Efstathiou, V., Louridas, P., et al. Code
smell detection by deep direct-learning and transfer-
learning. J Syst Softw. 2021;176:110936. https://doi.
org/10.1016/j.jss.2021.110936.

http://www.globalce.org
http://globalce.org
http://globalce.org
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3324884.3415305
https://doi.org/10.1145/3324884.3415305
https://doi.org/10.48550/arXiv.2207.08466
https://doi.org/10.48550/arXiv.2207.08466
https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.1016/j.jss.2021.110936

	Editor’s Corner
	Biomedical Technology and Clinical Engineering in Greece after the Pandemic: Highlighted Works from the Panhellenic Conference of Biomedical Technology
	Aris Dermitzakis1,2,*, Vasiliki Zilidou1,3, Eleftheria Vellidou1,4, Alkinoos Athanasiou1,3

	Digital Transformation Management in Health Services: Health Professionals Perceptions as an Implementation Factor
	Theodoros S. Tanis*, Chryssoula Chatzigeorgiou, Ioanna Simeli, and Evangelia Stalika

	Validating the ID-GAMING e-Training Toolkit for People with Intellectual Disabilities in Greece
	Niki Pandria*, Anastasia Barboudi, Vasileia Petronikolou, Panagiotis Antoniou and Panagiotis D. Bamidis

	Novel Functional Electrical Stimulation Parameter Optimization for Neurorehabilitation Using Both Conventional and AI Techniques
	Arsenios Arsenidis1, Alexandros Moraitopoulos2, Alkinoos Athanasiou2, Alexandros Vildiridis3, Panagiotis Bamidis2, Petros Stefaneas4 and Alexandros Astaras5

	Leveraging Web Scraping and API Integration for Efficient Medical Device Data Management
	Agapi Konstantina Liontou1,*, Spilios Zisimopoulos2 and Aris Dermitzakis1

	Human Muscle State Machine Using Electromyography Classification with Machine Learning
	George Lyssas1,*, Konstantinos Mitsopoulos1, Dimitris Zantzas2, Anestis Kalfas2, Panagiotis D. Bamidis1

	Kinematic and Dynamic Analysis of Lower Limb Movement: Towards the Design of a Wearable Rehabilitation Assistant Device
	Filippos Margaritis1,*, Konstantinos Mitsopoulos1, Kostas Nizamis2, Alkinoos Athanasiou1 and Panagiotis D. Bamidis1

	A Novel Dermatological Diagnosis Support Device Based on Electrical Impedance Spectroscopy
	Alexandros Moraitopoulos1,*, Konstantinos Mitsopoulos1, Christina Kemanetzi2, Panagiotis Bamidis1 and Alexandros Astaras3

	Software Skills Identification: A Multi-Class Classification on Source Code Using Machine Learning
	Dimitris Bamidis, Ilias Kalouptsoglou, Apostolos Ampatzoglou, Alexandros Chatzigeorgiou*

	Improvement of Aortic Valve Stenosis Classification in Patients Through Computational Fluid Dynamics Model
	Ioannis Makropoulos, Dimitris Zantzas, Vasilis Gkoutzamanis, Anestis Kalfas*

	Kinematic and Dynamic Analysis of the Human Hand’s Articulation for Wearable Soft-Robotic Device Applications
	Paschalina-Danai Sarra, Vasiliki Fiska, Konstantinos Mitsopoulos, Diamanto Mylopoulou, and Panagiotis D. Bamidis*

	Deep Learning Classification of Epileptic Magnetoencephalogram
	Andreas Stylianou1, Lefteris Koumakis2, Maria Hadjinicolaou3, Adam Adamopoulos1,* and Alkinoos Athanasiou4

