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ABSTRACT

Sleep stage scoring is necessary for diagnosing several sleep disorders. However, it is an intensive and repetitive task and a vital 
automation candidate. This work seeks to evaluate different kinds of Machine Learning based classification algorithms available 
in the scientific literature to determine which one fits better the clinical practice requirements. The comparison is made with 
a predefined experimental design, using electroencephalography, electrooculography, and electromyography signals from the 
polysomnographic records of the Sleep-EDFx dataset. The comparison considers the accuracy and speed of algorithms based 
on Linear Discriminate Analysis, Support Vector Machines, Random Forests, and Artificial Neural Networks. The latter group 
includes the Deep Neural Networks DeapFeatureNet, based on Convolutional Neural Networks, and DeepSleepNet, additionally 
based on Recurrent Neural Networks. It is determined that several of the tested algorithms boast high accuracy levels (85%). 
From them, DeepSleepNet is chosen as the fittest due to its considerable advantage in execution time. Nevertheless, the final 
result should always be reviewed by the experts.  
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INTRODUCTION

Sleep stage scoring is necessary for diagnosing several 
sleep disorders, including insomnia, sleep apnea, narcolepsy, 
and hypersomnia. According to the American Academy 
of Sleep Medicine (AASM), this operation entails the divi-
sion of a polysomnographic record (PSG) in consecutive 
30-second windows, called epochs. Each epoch has to be 
classified as wakefulness (W), REM sleep (R), or one of 

three non-REM sleep stages: N1, N2, or N3. * Addition-
ally, AASM defines the rules that have to be followed to 
perform the scoring based on the visual examination of 
each epoch of the PSG record.

A PSG record shows the behavior throughout the time 
of various electrophysiological signals. The three most 
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important signals are (1) electrical activity in the cerebral 
cortex, measured using electroencephalography (EEG); (2) 
in the face muscles, using electromyography (EMG); and 
(3) the eye movements, using electrooculography (EOG). It 
may also include the cardiac activity or electrocardiogram 

(ECG), the respiratory activity, and the body movements. 
The scoring rules rely on identifying various patterns in 
the signals, including the Alpha, Beta, Theta, and Delta 
Activity, K complexes, Spindles, REM, and SEM.** Table 
1 summarizes some of these patterns. 

TABLE 1. Common Patterns in Polysomnographic Signals 

Pattern Stage Signal Frequency Morphology

Alpha Activity W, N1 EEG 8 - 13 Hz
Beta Activity W, N1, R EEG 14 - 30 Hz

Theta Activity NREM, R EEG 4 - 8 Hz
Delta Activity N3, R EEG 0.5 - 4 Hz

Spindle N2, N3 EEG 12 - 14 Hz
K Complex N2, N3 EEG 0.5 - 1.5 Hz Biphasic high amplitude peak
Slow waves N3 EEG 0.5 - 2 Hz High amplitude waves

EEG = electroencephalography.

The PSG records may last for 8 hours, so the number 
of epochs is close to a thousand. Therefore, the scoring 
process is intensive, repetitive, and prone to errors. The 
scientific literature describes many algorithms that allow 
the automation of the process by using various Machine 
Learning techniques. However, the low inter-scorer 
agreement level,1,2 among other limitations, has limited 
the accuracy of the algorithms and, hence, the reach of 
the automation process.

For instance, Fraiwan et al. 3 use the Continuous Wavelet 
Transform of the EEG signals as features and a Linear Dis-
criminant Analysis (LDA) based classifier. As a result, they 
reach an 84% accuracy level with the MIT-BIH4,5 dataset 
records. Susmakova & Krakovska6 also use an LDA-based 
classifier, but their algorithm extracts a wider variety of 
features from different signals. Furthermore, they prove 
the importance of the information contained within the 
EOG and EMG signals to discriminate some of the stages.

Koley & Dey7 evaluate the performance of a Support 
Vector Machine (SVM) based classifier with different 
combinations of features. Their algorithm has an 89% 
accuracy on their own dataset, close to the inter-scorer 
agreement level. Aboalayon et al.8 also use an SVM clas-
sifier, reaching a 92.5% accuracy on records from the 
Sleep-EDF5,9 dataset.

Set et al. 10 compare the performance of different classi-
fiers, including Decision Trees (DT), Random Forests (RF), 
SVM, and Artificial Neural Networks (ANN). Moreover, they 
employ various feature extraction techniques, counting 
the Discrete Wavelet Transform (DWT). As a result, they 
determine that the RF obtains the best results, reaching a 
97% accuracy with their own records. Finally, Aboalayon 
et al.11 compare the DT, SVM, ANN, K-Nearest Neighbors, 
Naive Bayes (NB), and LDA classifiers. In their work, the 
DT classifier obtained the best results with a 93% accuracy 
on records from the Sleep-EDF dataset.

Finally, the Deep Learning techniques also have gained 
a foothold in sleep stage scoring. For example, Zhang et 
al.12 propose using a Recurrent Neural Network (RNN) 
as a classifier but using conventional feature extraction 
methods. Their algorithm reaches 80.25% accuracy on 
the SHHS5 dataset records. Alternatively, Yildirim et al.13 
present a Convolution Neural Network-based algorithm 
that uses convolutional layers for feature extraction, 
with a 91% accuracy on Sleep-EDF records. Additionally, 
Supratak et al.14 use a Convolutional Neural Networks 
(CNN) combined with an RNN, reaching an 82% accuracy 
on the same records.

The goal of this work is to select a sleep stage scoring 
algorithm to facilitate the work of the experts. Furthermore, 
the algorithm should be included in a software system 
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for the clinical analysis of polysomnographic records. 
Therefore, the selection should be based on the accuracy 
of the predictions and consider execution time and the 
general availability of the input data. With that in mind, 
the performance of several algorithms from the scientific 
literature will be compared using the same records and 
in similar conditions.

MATERIALS

The work uses PSG records from the Sleep Cassette 
dataset belonging to Sleep-EDFx.5,9 The dataset has 153 
subjects between 25 and 101 years old and was scored by 
several experts following the Rechtschaffen and Kales (R 
& K)15 rules. The records include two EEG and one EOG 
signal, samples at 100 Hz, and one EMG signal at 1 Hz. 
Both EOG and EMG signals are considered in this work, 
but only the Fpz-Cz channel is used from the EEG signals. 
That way, all the implemented algorithms depend only on 
the minimum parameters of any PSG record.1

The dataset is split into two parts of approximately 
the same number of records. The first half contains the 
subjects with identifications 00 through 38 and is reserved 
for training the scoring algorithms. The second one, with 
subjects 40 through 82, is used to evaluate and compare 
the performance of said algorithms.

METHODS

The analyzed algorithms’ execution time can be split 
into three main phases: Data preprocessing, feature ex-
traction, and classification. The preprocessing and feature 
extraction phases are implemented in the Python and C# 
programming languages. For the classification, the work 
additionally employs the Weka software system16,17 from 
the University of Waikato, New Zealand.

Preprocessing

The goal of the preprocessing phase is to prepare the 
data for the feature extraction phase. To achieve it, all 
signals are uniformly sampled at 100 Hz, and no digital 
filtering is applied beyond what is already included in the 
dataset: 0.5 to 100 Hz range for EEG and EOG and 0.7 to 
16 Hz, for EMG. The records are segmented in 30-second 
windows that match the epochs that will be classified later. 
Also, the third and fourth non-REM sleep stages from R & 

K are combined into one Slow Wave Sleep or N3 stage1,7 
to fit better the AASM stages. Additionally, the unknown 
or invalid sleep stages are excluded from consideration. 
The wake stages before the first and posterior to the last 
sleep stages are also excluded from the training dataset 
records. The latter operation reduces the disparities in 
the amounts of epochs classified with each sleep stage. 
Besides, more importantly, for the RNN classifiers, it does 
not affect the continuity of a record’s epochs.

Feature Extraction

The feature extraction phase obtains descriptive values 
that reflect the information inside the relevant signals for 
the classification process. The values or features used in this 
work are obtained by analyzing the signals in each epoch 
in the time domain, frequency domain, time-frequency 
domain, and other nonlinear means.

Descriptive Statistics

These features are obtained by computing descriptive 
statistics from the signal’s samples. The Mean, Variance, 
Kurtosis, Skewness, and 75th Percentile have been em-
ployed in this work.

Entropy

Entropy is a measure of the irregularity of a signal in 
the time domain.18 Equation 1 shows the formula proposed 
by Shannon for this measure:

where p(x_i ) is the probability of a signal sample hav-
ing the value x_i.

Other estimation methods, including the Approximate 
Entropy, are displayed in equation 2.

The values of ϕ can be obtained using an algo-
rithm that represents the signal in the phase domain 
Xi={xi, x(i+1), ..., x(i+(m-1)) } and calculates the distance between 
those patterns using the L1 norm. Then,

(1)

(2)
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 where           is the amount of Xj patterns that satisfy 
∥Xi-Xj ∥1≤r. 
In this work, the pattern length (m) is 2 and r is the 

standard deviation of the signal in the epoch, multiplied 
by 0.1, as estimated in.18

Largest Lyapunov Exponent

The Largest Lyapunov Exponent (LLE) indicates how 
unpredictable a signal is. It has been demonstrated that it 
can help discriminate the N1 and N2 stages.7 The algorithm 
proposed by19 allows estimating LLE by calculating the 
distances between the most similar trajectories, which 
are also distant in the time domain. Equation 4 describes 
this distance,

where τ is the threshold in time domain and 
Xi={xi, x(i+J), ..., x(i+(m-1)J)} is a trajectory in phase domain. 
Once the distances have been calculated, the LLE can be 
obtained using linear regression with equation 5.

In our work we use the values 10 and 7 for m and J, re-
spectively, while τ is the mean period of the signal (MNF-1).

Fractal Dimension

The fractal dimension estimates the fractional dimen-
sions of the geometric shape of a signal in the time do-
main.18 This measure is especially useful for recognizing 
the N3 stage.7

The Higuchi algorithm calculates the fractal dimen-
sion as the slope of the mean squares fit of the values of 
log(L(k)) against log(1/k) for k between 1 and kmax. The 
values of L(k) are calculated using the equation 6:

where Lm(k) is the mean length of the sequence

calculated with equation 7:

In this work we use the value 40 for kmax, that was 
estimated in.18

Discrete Fourier Transform

The Fast Fourier Transform (FFT) algorithm efficiently 
estimates the frequency spectrum. The spectrum can 
be used to obtain the mean frequency of the signal, the 
spectral entropy, and the relative spectral density of the 
relevant frequency bands (Table 1).

The mean frequency can be calculated using equation 8:

where M in the amount of frequency bins, fi are the fre-
quency values and P is the normalized spectral frequency 
(∑Pi=1).20 Similarly, the spectral entropy of a frequency 
band can be obtained from equation 9:

where fl and fh are the minimum and maximum fre-
quencies, respectively and Nf is the amount of frequency 
bins in the range [fl,fh].18

High Order Spectra

The High Order Spectra analysis can extract features 
related to third-order statistics of a signal.21 Before cal-
culating the features, the Bispectrum has to be estimated 
using equation 10,

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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where Xi is the Short-Time Fourier Transform (STFT) 
of the signal on the i-th window and W is the number of 
windows. The STFT in a vicinity of xi is the FFT of the 
product of the signal and a window function centered on 
xi. 22 In our work, we use 2 seconds long Haan windows, 
with 1 second (50%) of overlap between consecutive 
windows. The Bispectrum is symmetric in both axes, so 
its domain of interest is defined in the expression 11.

Once the Bispectrum is calculated, it is possible to 
calculate its mean amplitude, the Normalized Bispectral 
Entropy (equation 12), its logarithmic sum (equation 13) 
and its mean frequency (equation 14):

Wavelet Transform

The Wavelet Transforms translate a signal into the 
time-frequency domain. The transformation approxi-
mates the signal inside a time window by a Wavelet base 
(ψ) using different time scales.22 The scale factors are 
inversely proportional to the frequency of the Wavelet 
base, as stated in equation 15,

where Ts is the sampling period and fψ is the mean 
frequency of the Wavelet base (3).

The DWT decomposes the signal in two coefficient 
vectors with N/2 values, satisfying

where Hψ and Gψ are dual filters with sub-sampling, 
related to the Wavelet base.22 The a1 vector contains an 
approximation of the original signal in the frequency range 
[0,1/4 fs ], while d1 is a detail vector in the frequency range 
[1/4 fs,1/2 fs ], where fs is the sampling frequency.10 The 
DWT can be computed again from vector a1, in order to 
obtain the vectors a2 and d2 with frequency ranges [0,1/8 
fs ] and [1/8 fs,1/4 fs ], respectively. Thus, successively, 
the signal can be decomposed in L levels, after which the 
vectors d1,d2,...,dL,aL belong to different frequency bands.

The entropy of each relevant frequency band (Table 
1) along the epoch in question can be calculated from 
the transform. We use the Daubechies function (db1) 
as the Wavelet base for the EOG signals and the reverse 
biorthogonal function (rbio3.3) for the EEG signals. Given 
the 100 Hz sampling frequency of the signals, once they 
are decomposed into 5 levels, the frequencies of the 
coefficient vectors approximately match the frequency 
bands in Table 1.

Classification

The classification phase is responsible for assigning 
a sleep stage to each epoch contingent on the features 
extracted from it. In our work, we use classifiers based 
on Linear Discriminate Analysis,3 SVMs,23 RF,23,24 ANN, 
and NB.23

Several kinds of Neural Networks have been analyzed, 
including Multilayer Perceptrons (MLP),10,25 CNN, and 
RNN. Specifically, we have tested the networks DeepFea-
tureNet (DFN) and DeepSleepNet (DSN),14 implemented 
on Python using Tensorflow. The former is a CNN, while 
the latter is a hybrid network combining a CNN and an 
RNN. Both algorithms use CNN for feature extraction, 
so they do not require the methods described in section 
Feature Extraction.

The implementation proposed for a single signal 
has been expanded to process the EOG, EMG, and EEG 
signals.14 This was achieved by taking advantage of the 

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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capacity of CNN layers to process several input channels 
and by increasing the size of the filters proportionally 
to the number of channels. The DFN network has been 
trained with 75 epochs, while DSN has required 25 more 
in fine-tuning. The source code is available at https://
github.com/ALabrada/deepsleepnet.

For the remaining classifiers, it has been used the 
implementations available in Weka, using their respective 
default parameters.

Evaluation

The performance of each algorithm has been analyzed, 
considering the accuracy (Acc) and Cohen’s kappa coef-
ficient. Additionally, the classification performance of the 
individual stages is considered using the Precision (PR) 
and Recall (RE) metrics.

RESULTS

The classification algorithms have been trained with 
the first half of the PSG records of the Sleep Cassette da-
taset. The set has 76 records that belong to 39 different 
subjects with identifiers 00 through 38. Table 2 shows the 
distribution of the stages assigned by the experts to the 
74354 epochs that have been used from those records.

The 10-fold cross-validation technique has been used 
to estimate the hyper-parameters of the models and the 
validation error. Table 3 shows the estimated errors.

The trained classifiers have been tested using the 
second half of the Sleep Cassette dataset, and the results 
have been compared. The set has 77 records that belong 
to 39 subjects with identifiers 40 through 82. A total of 
68.8% of the 208349 epochs belong to the wake stage. 

TABLE 2. Sleep Stage Distribution of the Analyzed Epochs 

Stage
Training Testing (partial) Testing (full)

Count Percent Count Percent Count Percent

W 14884 20.0 33410 33.9 143265 68.8 
N1 7536 10.1 14013 14.2 14013 6.7 
N2 30143 40.5 33906 34.4 33906 16.3 
N3 7954 10.7 5104 5.2 5104 2.4 
R 13837 18.6 12062 12.2 12062 5.8 

Total 74354 100.0 98495 100.0 208349 100.0 

TABLE 3. Validation Error using the Training Records 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 77.29 0.6882 0.902 0.438 0.775 0.817 0.785 0.804 0.398 0.869 0.843 0.695
NB 64.79 0.5324 0.748 0.320 0.738 0.507 0.659 0.689 0.249 0.668 0.925 0.619
RF 83.09 0.7674 0.868 0.623 0.830 0.896 0.822 0.904 0.365 0.906 0.863 0.825

SVM 79.49 0.7155 0.858 0.501 0.788 0.872 0.787 0.867 0.286 0.894 0.848 0.745
MLP 80.60 0.7334 0.883 0.515 0.808 0.867 0.790 0.874 0.342 0.885 0.838 0.794
DFN 74.27 0.6630 0.969 0.287 0.883 0.652 0.822 0.789 0.692 0.721 0.912 0.658
DSN 78.10 0.7055 0.906 0.326 0.854 0.756 0.911 0.901 0.427 0.812 0.726 0.817
AVG 76.80 0.6865 0.876 0.430 0.811 0.767 0.797 0.833 0.394 0.822 0.851 0.736

https://github.com/ALabrada/deepsleepnet
https://github.com/ALabrada/deepsleepnet
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Following the procedure that has been described in 
section Preprocessing, the disparity between stages can 
be decreased by reducing this quantity to the 33.9%. 
Table 4 shows a performance comparison between the 
algorithms using only the selected epochs, while Table 
5 shows the same comparison, but with all the epochs.

Finally, Table 6 compares the execution time of the 
algorithms while classifying the whole test dataset. The 
execution time of the algorithms that use classifiers imple-
mented in Weka is further split into the feature extraction 
and classification phases. The data has been collected in a 
personal computer with an Intel Core i5-4570 processor 
(CPU), 16 GB of DDR3-1600 memory (RAM), and executed 
in Microsoft .NET Framework.

DISCUSSION

The results show that the test error is less than the 
validation error when using the full records, but it is 
greater when using the selected subset of the epochs. 
This apparent discrepancy can be explained due to the 
previously mentioned high proportion of epochs classified 
with wake stages. Every one of the analyzed algorithms 
obtains relatively high precision and recall results clas-
sifying this stage.

In contrast, all algorithms attain poor precision and 
recall results that classify the N1 stage in absolute and 
relative terms. This behavior is consistent with other 
studies from the scientific literature,24 especially those 

TABLE 4. Performance Comparison of the Classifiers using the Partial Test Dataset 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 69.43 0.5776 0.911 0.385 0.664 0.465 0.723 0.759 0.279 0.840 0.752 0.563
NB 55.09 0.4109 0.841 0.329 0.594 0.241 0.555 0.604 0.231 0.582 0.954 0.515
RF 73.98 0.6335 0.858 0.504 0.692 0.637 0.737 0.853 0.183 0.887 0.756 0.652

SVM 72.93 0.6213 0.866 0.433 0.697 0.591 0.718 0.842 0.215 0.863 0.774 0.619
MLP 71.22 0.6009 0.817 0.399 0.724 0.558 0.682 0.856 0.244 0.784 0.770 0.634
DFN 67.78 0.5670 0.968 0.303 0.743 0.517 0.898 0.697 0.640 0.734 0.776 0.454
DSN 73.88 0.6308 0.864 0.347 0.772 0.812 0.959 0.894 0.419 0.744 0.553 0.675
AVG 69.19 0.5774 0.875 0.386 0.698 0.546 0.753 0.786 0.316 0.776 0.762 0.587

TABLE 5. Performance Comparison of the Classifiers using the Full Test Dataset 

Type Acc Kappa
PR RE

W N1 N2 N3 R W N1 N2 N3 R

LDA 83.45 0.6804 0.981 0.340 0.644 0.429 0.655 0.913 0.279 0.840 0.752 0.563
NB 69.02 0.4682 0.966 0.222 0.504 0.197 0.380 0.766 0.231 0.582 0.954 0.515
RF 86.43 0.7263 0.966 0.466 0.666 0.622 0.711 0.947 0.183 0.887 0.756 0.652

SVM 85.73 0.7147 0.969 0.382 0.679 0.563 0.675 0.942 0.215 0.863 0.774 0.619
MLP 85.10 0.699 0.955 0.347 0.709 0.532 0.666 0.947 0.244 0.784 0.770 0.634
DFN 80.14 0.6366 0.991 0.270 0.687 0.415 0.879 0.862 0.579 0.774 0.772 0.432
DSN 85.30 0.6973 0.953 0.318 0.773 0.812 0.967 0.970 0.537 0.688 0.442 0.474
AVG 82.17 0.6604 0.969 0.335 0.666 0.510 0.705 0.908 0.324 0.774 0.746 0.556
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using the Sleep-EDFx dataset.13,14,26–28 The DFN and DSN 
algorithms reach around 20% higher recall measures for 
this stage, but its influence is mitigated by lower values 
in other stages. The low classification accuracy of the N1 
stage can affect the result of the sleep quality analysis,29 

which makes the algorithms unsuitable for standalone 
usage and, thus, require the intervention of the experts.

From the first five algorithms, the ones using more 
conventional strategies, the RF-based classifier obtains 
the best results. This confirms the conclusions that were 
reached by previous studies.10,30 Furthermore, SVM, MLP, 
and LDA also obtain satisfactory results according to both 
performance metrics.

From the two last algorithms based on Deep Learning, 
DSN reaches superior results in all metrics other than 
DFN. However, during validation, our implementation of 
DSN is 4% lower in accuracy and 6% lower in Kappa score 
than the one reported by Supratak et al.14 with the same 
dataset, but using different hyper-parameters and half of 
the PSG records. Regarding the traditional algorithms, the 
accuracy of DSN classifying the test dataset is equivalent 
to the accuracy of RF within 1%.

Considering that several of the algorithms reach 
similar accuracy levels, their execution times are used as 
tie-breakers. The results in Table 6 prove that, from the 
analyzed algorithms, the ones based on Deep Learning 
require a significantly lower amount of time to identify 
the sleep stages of a PSG record.

CONCLUSIONS

As part of our work, we have compared the performance 
of a wide range of sleep stage scoring algorithms avail-
able in the scientific literature to find the one that better 
matches clinical use requirements. With that in mind, ac-
curacy and speed are used as the selection criteria for the 
comparison. The results prove that the RF, SVM, MLP, and 
DSN algorithms reach the greater accuracy levels while 
classifying, exceeding 85% in this metric and 0.69 in Cohen’s 
kappa. Moreover, from them, DSN is significantly faster, 
requiring less than 30 seconds to score a record’s epochs 
on average. The combination of both criteria determines 
that DSN is the most appropriate sleep stage scoring al-
gorithms for the context of the clinical practice, from the 
set of candidates taken into consideration. Nevertheless, 
the algorithms are much less accurate in classifying the 
N1 stage, so the experts should review the sleep stage 
scoring performed by DSN.
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